首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this study, we evaluated solid sorbents for their ability to passively control indoor CO2 concentration in buildings or rooms with cyclic occupancy (eg, offices, bedrooms). Silica supported amines were identified as suitable candidates and systematically evaluated in the removal of CO2 from indoor air by equilibrium and dynamic techniques. In particular, sorbents with various amine loadings were synthesized using tetraethylenepentamine (TEPA), poly(ethyleneimine) (PEI) and a silane coupling agent 3‐aminopropyltriethoxysilane (APS). TGA analysis indicates that TEPA impregnated silica not only displays a relatively high adsorption capacity when exposed to ppm level CO2 concentrations, but also is capable of desorbing the majority of CO2 by air flow (eg, by concentration gradient). In 10 L flow‐through chamber experiments, TEPA‐based sorbents reduced outlet CO2 by up to 5% at 50% RH and up to 93% of CO2 adsorbed over 8 hours was desorbed within 16 hours. In 8 m3 flow‐through chamber experiments, 18 g of the sorbent powder spread over a 2 m2 area removed approximately 8% of CO2 injected. By extrapolating these results to real buildings, we estimate that meaningful reductions in the CO2 can be achieved, which may help reduce energy requirements for ventilation and/or improve air quality.  相似文献   

2.
This study presents findings of indoor environmental quality (IEQ) investigations conducted in elementary schools׳ classrooms in the United Arab Emirates (UAE). Average TVOC, CO2, O3, CO, and particle concentrations measured in the classrooms were 815 µg/m3, 1605 ppm, 0.05 ppm, 1.16 ppm, and 1730 µg/m3, respectively. Whereas, local authority known as Dubai Municipality recommended 300 µg/m3, 800 ppm, 0.06 ppm, 9 ppm, and 150–300 µg/m3 for TVOC, CO2, O3, CO, and particle, respectively. Dubai Municipality recommended temperature and relative humidity (RH) levels of 22.5 °C to 25.5 °C and 30%–60%, respectively. Average temperature and RH levels measured in the classrooms were 24.5 °C and 40.4%, respectively. Average sound level in the classrooms was 24 dB greater than recommended sound level limit of 35 dB. Six (6) classrooms had average lux levels in the range of 400–800 lux. Two (2) classrooms had average lux levels in the range of 100–200 lux. The remaining classrooms had lux levels around the recommended 300 lux. High occupancy density was observed in majority of the studied classrooms. Observations during walkthrough investigations could be used to explain measured IEQ data. Poor IEQ conditions in the studied classrooms highlight the need for further research investigation to understand how poor classrooms׳ IEQ condition could influence students׳ health, comfort, attendance rate, and academic performance.  相似文献   

3.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   

4.
The purpose of this study was to examine the effects on humans of exposure to carbon dioxide (CO2) and bioeffluents. In three of the five exposures, the outdoor air supply rate was high enough to remove bioeffluents, resulting in a CO2 level of 500 ppm. Chemically pure CO2 was added to this reference condition to create exposure conditions with CO2 at 1000 or 3000 ppm. In two further conditions, the outdoor air supply rate was restricted so that the bioeffluent CO2 reached 1000 or 3000 ppm. The same 25 subjects were exposed for 255 min to each condition. Subjective ratings, physiological responses, and cognitive performance were measured. No statistically significant effects on perceived air quality, acute health symptoms, or cognitive performance were seen during exposures when CO2 was added. Exposures to bioeffluents with CO2 at 3000 ppm reduced perceived air quality; increased the intensity of reported headache, fatigue, sleepiness, and difficulty in thinking clearly; and reduced speed of addition, the response time in a redirection task, and the number of correct links made in the cue‐utilization test. This suggests that moderate concentrations of bioeffluents, but not pure CO2, will result in deleterious effects on occupants during typical indoor exposures.  相似文献   

5.
This work examined window/door opening as means of bedroom ventilation and the consequent effect upon occupants’ sleep, using data from 17 healthy volunteers. Bedroom CO2 level, temperature, and relative humidity were measured over 5 days, for two cases: open window or door (internal, bedroom door), and closed window and door. Participant filled questionnaires and sleep diary provided subjective measure of sleep quality. Actigraphy objectively monitored the participants during sleep. Additionally, a FlexSensor, placed under pillows of participants, detected movement during sleep. Average CO2 level for the Open conditions was 717 ppm (SD = 197 ppm) and for Closed conditions was 1150 ppm (SD = 463 ppm). Absolute humidity levels were similar for both conditions, while Open conditions were slightly cooler (mean = 19.7°C, SD = 1.8°C) than Closed (mean = 20.1°C, SD = 1.5°C). Results showed significant correlations (P < .001) between actigraphy data and questionnaire responses for: sleep latency (r = .45), sleep length (r = .87), and number of awakenings (r = .28). Of all analyzed sleep parameters, questionnaire‐based depth of sleep (P = .002) and actigraphy‐based sleep phase (P = .003) were significantly different between Open and Closed conditions.  相似文献   

6.
The emission rate of carbon dioxide (CO2) depends on many factors but mainly on the activity level (metabolic rate) of occupants. In this study, we examined two other factors that may influence the CO2 emission rate, namely the background CO2 concentration and the indoor temperature. Six male volunteers sat one by one in a 1.7 m3 chamber for 2.5 h and performed light office-type work under five different conditions with two temperature levels (23 vs. 28°C) and three background concentrations of CO2 (800 vs. 1400 vs. 3000 ppm). Background CO2 levels were increased either by dosing CO2 from a cylinder or by reducing the outdoor air supply rate. Physiological responses to warmth, added CO2, and bioeffluents were monitored. The rate of CO2 emission was estimated using a mass-balance equation. The results indicate a higher CO2 emission rate at the higher temperature, at which the subjects were warm, and a lower emission rate in all conditions in which the background CO2 concentration increased. Physiological measurements partially explained the present results but more measurements are needed.  相似文献   

7.
Carbon nanotubes (CNTs) were modified by 3-aminopropyl-triethoxysilane (APTS) solution and were tested for its CO2 adsorption potential at multiple temperatures (20-100 °C). The physicochemical properties of CNTs were changed after the modification, which makes CNTs adsorb more CO2 gases. The adsorption capacities of CO2 via CNTs and CNTs(APTS) decreased with temperature indicating the exothermic nature of adsorption process and increased with water content in air at 0-7%. The mechanism of CO2 adsorption on CNTs and CNTs(APTS) appears mainly attributable to physical force regardless of temperature change, which makes regeneration of spent CNTs at a relatively low temperature become feasible. The CNTs(APTS) have good adsorption performance of CO2 at 20 °C as compared to many types of modified carbon or silica adsorbents documented in the literature. This suggests that the CNTs(APTS) are promising low-temperature adsorbents for CO2 capture from flue gas.  相似文献   

8.
This paper presents pollutant concentrations and performance data for code-required mechanical ventilation equipment in 23 low-income apartments at 4 properties constructed or renovated 2013-2017. All apartments had natural gas cooking burners. Occupants pledged to not use windows for ventilation during the study but several did. Measured airflows of range hoods and bathroom exhaust fans were lower than product specifications. Only eight apartments operationally met all ventilation code requirements. Pollutants measured over one week in each apartment included time-resolved fine particulate matter (PM2.5), nitrogen dioxide (NO2), formaldehyde and carbon dioxide (CO2) and time-integrated formaldehyde, NO2 and nitrogen oxides (NOX). Compared to a recent study of California houses with code-compliant ventilation, apartments were smaller, had fewer occupants, higher densities, and higher mechanical ventilation rates. Mean PM2.5, formaldehyde, NO2, and CO2 were 7.7 µg/m3, 14.1, 18.8, and 741 ppm in apartments; these are 4% lower, 25% lower, 165% higher, and 18% higher compared to houses with similar cooking frequency. Four apartments had weekly PM2.5 above the California annual outdoor standard of 12 µg/m3 and also discrete days above the World Health Organization 24-hour guideline of 25 µg/m3. Two apartments had weekly NO2 above the California annual outdoor standard of 30 ppb.  相似文献   

9.
Humans emit carbon dioxide (CO2) as a product of their metabolism. Its concentration in buildings is used as a marker of ventilation rate (VR) and degree of mixing of supply air, and indoor air quality (IAQ). The CO2 emission rate (CER) may be used to estimate the ventilation rate. Many studies have measured CERs from subjects who were awake but little data are available from sleeping subjects and the present publication was intended to reduce this gap in knowledge. Seven females (29 ± 5 years old; BMI: 22.2 ± 0.8 kg/m2) and four males (27 ± 1 years old; BMI: 20.5 ± 1.5 kg/m2) slept for four consecutive nights in a specially constructed capsule at two temperatures (24 and 28°C) and two VRs that maintained CO2 levels at ca. 800 ppm and 1700 ppm simulating sleeping conditions reported in the literature. The order of exposure was balanced, and the first night was for adaptation. Their physiological responses, including heart rate, pNN50, core body temperature, and skin temperature, were measured as well as sleep quality, and subjective responses were collected each evening and morning. Measured steady-state CO2 concentrations during sleep were used to estimate CERs with a mass-balance equation. The average CER was 11.0 ± 1.4 L/h per person and was 8% higher for males than for females (P < 0.05). Increasing the temperature or decreasing IAQ by decreasing VR had no effects on measured CERs and caused no observable differences in physiological responses. We also calculated CERs for sleeping subjects using the published data on sleep energy expenditure (SEE) and Respiratory Quotient (RQ), and our measured CERs confirmed both these calculations and the CERs predicted using the equations provided by ASHRAE Standard 62.1, ASHRAE Handbook, and ASTM D6245-18. The present results provide a valuable and helpful reference for the design and control of bedroom ventilation but require confirmation and extension to other age groups and populations.  相似文献   

10.
《Water research》1996,30(1):171-177
The aim of this work was to evaluate the sorbent power of hydrotalcite compound [Mg3Al(OH)8]2CO3·xH2O (HT) and its calcined product Mg3AlO4(OH) (HT500) for 2,4,6-trinitrophenol (TNP) from water solution. The adsorption behaviour of TNP was investigated at diverse solid/solution ratios, pH and TNP concentration by batch equilibration technique. The L and H type adsorption isotherms obtained in those sorbents respectively indicated a chemisorption process which was irreversible and fitted the Langmuir equation model well. Sorption capacity and energy were found to be very high for HT500. The X-ray diffraction and IR spectroscopy techniques applied to TNP-HT and TNP-HT500 products indicate that anionic TNP is adsorbed by anion exchange in the interlayer of HT to 20% of the anion exchange capacity (AEC) and, by reconstruction of the layered structure on HT500, to 40% of the AEC. The results suggested the potential use of HT500 as a filter for TNP, being also easily recyclable.  相似文献   

11.
The adsorption of cadmium, copper, lead, nickel and zinc ions on maize Zea mays stalk meal was examined by equilibrium studies at 29°C. The amounts of the metal ions removed from solution depended on the metal ion type, the ionic size of the metals and were enhanced by EDTA (% N = 12.05) modification of the cellulosic sorbent. The sorption coefficient, Kd, of the metal ions between the adsorbent phase and the bulk aqueous phase was found. The sorption on the unmodified sorbent of lead ions from solutions containing zinc ions shows that lead ions are preferentially removed from solution.  相似文献   

12.
Formaldehyde is one of the most common indoor air pollutants in Chinese residences. This study introduces a novel laminated plate with adjustable surface temperature to remove gaseous formaldehyde. The plate is fabricated with activated carbon, polyimide, and copper foil via thermal compression. The plate can be regenerated in situ by applying a direct current to the copper foil. Adsorption‐regeneration cycle tests were conducted to evaluate the plate's formaldehyde removal performance. The overall removal efficiency of the fabricated laminated plate with glue mass fraction of 25% and thickness of 1.5 mm was about 30% at the face velocity of 0.8‐1.2 m/s. The pressure drop was about 5 Pa. Its removal ability can be regenerated in situ in 8 minutes by increasing the surface temperature to 80°C. The fabricated laminated plate showed good durability after 52 cycles of adsorption‐regeneration tests. The results indicate that the proposed laminated plate can enhance the purifying efficiency and enlarge the life span of ordinary, cheap sorbents. It makes cheap materials with low performance suitable for air purification.  相似文献   

13.
《Soils and Foundations》2023,63(1):101251
Groundwater in southern Hanoi, Vietnam has been recently detected to possess high concentration of ammonium ion (NH4+). Otherwise, one of the abundant sources of NH4+ comes from municipal solid waste landfills. Bentonite-clay mixtures (BCMs) widely utilized as landfill bottom barriers in various countries, but limited in Vietnam should perform well to isolate NH4+ from groundwater. This study is to evaluate combined effects of temperature and initial ammonium concentration on adsorption, diffusion, and permeability through mixtures of indigenous clay with 0 %, 5 %, 10 %, 15 % bentonite. The results indicated more effective NH4+ adsorption capacity for low initial concentration than high initial concentration in all temperatures (20, 35, and 50 °C). The temperature dependency showed an increase in adsorption coefficient from 20 °C to 35 °C and a decrease in the range of 35 °C and 50 °C. Whereas diffusion coefficient and hydraulic conductivity for all cases keep increasing gradually in both temperature ranges. The reasonable mass of bentonite content of 15 % should be added into local clay for landfill bottom liners in such conditions of elevated temperature at 50 °C and interaction of ammonium solution 1000 mg/L. The micro-structures via SEM images of these materials provided the proofs of both improvement of hydraulic barrier properties for indigenous clay owing to bentonite presence and NH4+ effects on their micro-structures.  相似文献   

14.
The effects of bedroom air quality on sleep and next‐day performance were examined in two field‐intervention experiments in single‐occupancy student dormitory rooms. The occupants, half of them women, could adjust an electric heater to maintain thermal comfort but they experienced two bedroom ventilation conditions, each maintained for 1 week, in balanced order. In the initial pilot experiment (N = 14), bedroom ventilation was changed by opening a window (the resulting average CO2 level was 2585 or 660 ppm). In the second experiment (N = 16), an inaudible fan in the air intake vent was either disabled or operated whenever CO2 levels exceeded 900 ppm (the resulting average CO2 level was 2395 or 835 ppm). Bedroom air temperatures varied over a wide range but did not differ between ventilation conditions. Sleep was assessed from movement data recorded on wristwatch‐type actigraphs and subjects reported their perceptions and their well‐being each morning using online questionnaires. Two tests of next‐day mental performance were applied. Objectively measured sleep quality and the perceived freshness of bedroom air improved significantly when the CO2 level was lower, as did next‐day reported sleepiness and ability to concentrate and the subjects' performance of a test of logical thinking.  相似文献   

15.
The aim of this laboratory experiment was to study the effects of ventilation rate, and related changes in air quality, predominantly bioeffluents, on work performance, perceived indoor air quality, and health symptoms in a typical conditions of modern open‐plan office with low material and equipment emissions. In Condition A, outdoor air flow rate of 28.2 l/s person (CO2 level 540 ppm) was applied and in Condition B, outdoor air flow rate was 2.3 l/s person (CO2 level 2260 ppm). CO2 concentration level was used as an indicator of bioeffluents. Performance was measured with seven different tasks which measure different cognitive processes. Thirty‐six subjects participated in the experiment. The exposure time was 4 hours. Condition B had a weak negative effect on performance only in the information retrieval tasks. Condition B increased slightly subjective workload and perceived fatigue. No effects on health symptoms were found. The intensity of symptoms was low in both conditions. The experimental condition had an effect on perceived air quality and observed odor intensity only in the beginning of the session. Although the room temperature was controlled in both conditions, the heat was perceived to impair the performance more in Condition B.  相似文献   

16.
The ventilation modalities in most Chinese residences are infiltration and opening windows. We measured infiltration rates and air change rates at night, with no attempt to change occupants' behaviors, of urban residences in five climate zones of China during four seasons. Using the CO2 decay method, we found the median infiltration rate for 294 residences to be 0.34 h?1. Using occupant‐generated CO2 as tracer gas, we determined air change rates over the course of 1 year in 46 bedrooms at night from mass balance considerations. In 54% of the measurements, windows were closed, so ventilation was only by infiltration. Windows were mainly closed when the outdoor temperature was below 15°C and above 26°C. The median infiltration rates did not differ appreciably among seasons and climate zones and were always less than 0.45 h?1.  相似文献   

17.
In a business as usual scenario, atmospheric carbon dioxide concentration (CO2) could reach 950 parts per million (ppm) by 2100. Indoor CO2 concentrations will rise consequently, given its dependence on atmospheric CO2 levels. If buildings are ventilated following current standards in 2100, indoor CO2 concentration could be over 1300 ppm, depending on specific ventilation codes. Such exposure to CO2 could have physiological and psychological effects on building occupants. We conducted a randomized, within-subject study, examining the physiological effects on the respiratory functions of 15 persons. We examined three exposures, each 150 min long, with CO2 of: 900 ppm (reference), 1450 ppm (decreased ventilation), and 1450 ppm (reference condition with added pure CO2). We measured respiratory parameters with capnometry and forced vital capacity (FVC) tests. End-tidal CO2 and respiration rates did not significantly differ across the three exposures. Parameters measured using FVC decreased significantly from the start to the end of exposure only at the reduced ventilation condition (p < 0.04, large effect size). Hence, poor ventilation likely affects respiratory parameters. This effect is probably not caused by increased CO2 alone and rather by other pollutants—predominantly human bioeffluents in this work—whose concentrations increased as a result.  相似文献   

18.
Technology for immobilization of biomass has attracted a great interest due to the high sorption capacity of biomass for sequestration of toxic metals from industrial effluents. However, the currently practiced immobilization methods normally reduce the metal sorption capacities. In this study, an innovative ion-imprint technology was developed to overcome the drawback. Copper ion was first imprinted onto the functional groups of chitosan that formed a pellet-typed sorbent through the granulation with Sargassum sp.; the imprinted copper ion was chemically detached from the sorbent, leading to the formation of a novel copper ion-imprinted chitosan/Sargassum sp. (CICS) composite adsorbent. The copper sorption on CICS was found to be highly pH-dependent and the maximum uptake capacity was achieved at pH 4.7-5.5. The adsorption isotherm study showed the maximum sorption capacity of CICS of 1.08 mmol/g, much higher than the non-imprinted chitosan/Sargassum sp. sorbent (NICS) (0.49 mmol/g). The used sorbent was reusable after being regenerated through desorption. The FTIR and XPS studies revealed that the greater sorption of heavy metal was attributed to the large number of primary amine groups available on the surfaces of the ion-imprinted chitosan and the abundant carboxyl groups on Sargassum sp. Finally, an intraparticle surface diffusion controlled model well described the sorption history of the sorbents.  相似文献   

19.
Abstract Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23±2°C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 (ig/m3) was higher than non-smoking flights (7.6 μg/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.  相似文献   

20.
Sarah M. Miller 《Water research》2010,44(19):5722-5754
A novel sorbent for arsenic, TiO2-impregnated chitosan bead (TICB), has been synthesized and successfully tested. Kinetic plots, pH dependence, isotherm data, and bead morphology are reported. Equilibrium is achieved after 185 h in batch experiments with exposure to UV light. The TICB system performs similarly to the mass equivalent of neat TiO2 nanopowder. The point of zero charge (pzc) for TICB was determined to be 7.25, and as with other TiO2-based arsenic removal technologies, the optimal pH range for sorption is below this pHpzc. Without exposure to UV light, TICB removes 2198 μg As(III)/g TICB and 2050 μg As(V)/g TICB. With exposure to UV light, TICB achieves photo-oxidation of As(III) to As(V), the less toxic and more easily sequestered arsenic form. UV irradiation also results in enhanced arsenic removal, reaching sorption capacities of 6400 μg As/g TICB and 4925 μg As/g TICB, where arsenic is initially added as As(III) and As(V), respectively. Because the TICB system obviates filtration post-treatment, TICB is superior to TiO2 nanopowder from the perspective of implementation for decentralized water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号