首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increasing fraction of volatile organic compounds (VOC) emissions come from the domestic use of solvents, contained within myriad commonplace consumer products. Emission rates are often poorly characterized and depend significantly on individual behavior and specific product formulation and usage. Time-concentration profiles of volatile organic compounds (VOCs) arising from the use of a representative selection of personal care products (PCPs) during showering are generated, and person-to-person variability in emissions calculated. A panel of 18 participants used a standardized set of products, dosages, and application times during showering in a controlled indoor bathroom setting. Proton transfer mass spectrometry was used to measure the in-room VOC evolution of limonene (representing the sum of monoterpenes), benzyl alcohol, and ethanol. The release of VOCs had reproducible patterns between users, but noticeable variations in absolute peak concentrations, despite identical amounts of material being used. The amounts of VOC emitted to air for one showering activity were as follows: limonene (1.77 mg ± 42%), benzyl alcohol (1.07 mg ± 41%), and ethanol (0.33 mg ± 78%). Real-world emissions to air were between 1.3 and 11 times lower than bottom-up estimates based on dynamic headspace measurements of product emissions rates, likely a result of PCPs being washed away before VOC evaporation could occur.  相似文献   

2.
Many volatile organic compounds (VOCs) are classified as known or possible carcinogens, irritants, and toxicants, and VOC exposure has been associated with the onset and exacerbation of asthma. This study characterizes VOC levels in 126 homes of children with asthma in Detroit, Michigan, USA. The total target VOC concentration ranged from 14 to 2274 μg/m3 (mean = 150 μg/m3; median = 91 μg/m3); 56 VOCs were quantified; and d‐limonene, toluene, p, m‐xylene, and ethyl acetate had the highest concentrations. Based on the potential for adverse health effects, priority VOCs included naphthalene, benzene, 1,4‐dichlorobenzene, isopropylbenzene, ethylbenzene, styrene, chloroform, 1,2‐dichloroethane, tetrachloroethene, and trichloroethylene. Concentrations varied mostly due to between‐residence and seasonal variation. Identified emission sources included cigarette smoking, solvent‐related emissions, renovations, household products, and pesticides. The effect of nearby traffic on indoor VOC levels was not distinguished. While concentrations in the Detroit homes were lower than levels found in other North American studies, many homes had elevated VOC levels, including compounds that are known health hazards. Thus, the identification and control of VOC sources are important and prudent, especially for vulnerable individuals. Actions and policies to reduce VOC exposures, for example, sales restrictions, improved product labeling, and consumer education, are recommended.  相似文献   

3.
Nail technicians are exposed to volatile organic compounds (VOCs) from nail products, but no studies have previously measured VOC biomarkers for these workers. This study of 10 nail technicians aimed to identify VOCs in nail salons and explore relationships between air concentrations and biomarkers. Personal and area air samples were collected using thermal desorption tubes during a work shift and analyzed using gas chromatography/mass spectrometry (GC/MS) for 71 VOCs. Whole blood samples were collected pre‐shift and post‐shift, and analyzed using GC/MS for 43 VOCs. Ventilation rates were determined using continuous CO2 measurements. Predominant air VOC levels were ethyl methacrylate (median 240 µg/m3), methyl methacrylate (median 205 µg/m3), toluene (median 100 µg/m3), and ethyl acetate (median 639 µg/m3). Blood levels were significantly higher post‐shift than pre‐shift for toluene (median pre‐shift 0.158 µg/L and post‐shift 0.360 µg/L) and ethyl acetate (median pre‐shift <0.158 µg/L and post‐shift 0.510 µg/L); methacrylates were not measured in blood because of their instability. Based on VOCs measured in these seven nail salons, we estimated that emissions from Greater Boston area nail salons may contribute to ambient VOCs. Ventilation rates did not always meet the ASHRAE guideline for nail salons. There is a need for changes in nail product formulation and better ventilation to reduce VOC occupational exposures.  相似文献   

4.
To conserve energy, office buildings with air-conditioning systems in Thailand are operated with a tight thermal envelope. This leads to low fresh-air ventilation rates and is thought to be partly responsible for the sick building syndrome symptoms reported by occupants. The objectives of this study are to measure concentrations and to determine sources of 13 volatile organic compounds (VOCs) in office buildings with air-conditioning systems in the business area of Bangkok. Indoor and outdoor air samples from 17 buildings were collected on Tenax-TA sorbent tubes and analyzed for individual VOCs by thermal desorption-gas chromatography/mass spectrometry (TD–GC/MS). Building ventilation was measured with a constant injection technique using hexafluorobenzene as a tracer gas. The results show that the VOC concentrations varied significantly among the studied buildings. The two most dominant VOCs were toluene and limonene with average concentrations of 110 and 60.5 μg m−3, respectively. A Wilcoxon sum rank test indicated that the indoor concentrations of aromatic compounds and limonene were statistically higher than outdoor concentrations at the 0.05 level, while the indoor concentrations of chlorinated compounds were not. Indoor emission factors of toluene and limonene were found to be highest with the average values of 80.9 and 18.9 μg m−2 h−1, respectively. Principal component analysis was applied to the emission factors of 13 VOCs, producing three components based on source similarities. Furthermore, a questionnaire survey investigation and field measurements of building air exchange pointed to indoor air complaints related to inadequate ventilation.  相似文献   

5.
Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs, and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady‐state multitracer system, and 7‐day VOC measurements were collected using passive samplers in both living areas and basements. A walk‐through survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52/h, respectively, and had strong and opposite seasonal trends, for example, AERs were highest in residences during the summer, and highest in basements during the winter. Airflows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right‐skewed, for example, 90th percentile benzene, toluene, naphthalene, and limonene concentrations were 4.0, 19.1, 20.3, and 51.0 μg/m3, respectively; maximum concentrations were 54, 888, 1117, and 134 μg/m3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline‐powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements.  相似文献   

6.
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10−5) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.  相似文献   

7.
The study focuses on the role of the fired clay brick making industry (BMI) on deforestation and greenhouse gas (GHG) emissions in Sudan. The BMI is based on numerous kilns that use biomass fuel, mainly wood which is largely harvested unsustainably. This results in potential deforestation and land degradation. Fuelwood consumption data was collected using interviews and questionnaires from 25 BMI enterprises in three administrative regions, namely Khartoum, Kassala and Gezira. Annual fuelwood consumption data (t dm yr− 1) was converted into harvested biomass (m3) using a wood density value of 0.65 t dm m− 3. For annual GHG estimations, the methodological approach outlined by the Intergovernmental Panel on Climate Change (IPCC) was used. According to our results, the annual deforestation associated with the BMI for the whole of Sudan is 508.4 × 103 m3 of wood biomass, including 267.6 × 103 m3 round wood and 240.8 × 103 m3 branches and small trees. Total GHG emissions from the Sudanese BMI are estimated at 378 028 t CO2, 15 554 t CO, 1778 t CH4, 442 t NOX, 288 t NO and 12 t N2O per annum. The combined CO2-equivalent (global warming potential for 100-year time horizon) of the GHG emissions (excluding NOX and NO) is 455 666 t yr− 1. While these emissions form only a small part of Sudan's total GHG emissions, the associated deforestation and land degradation is of concern and effort should be made for greater use of sustainable forest resources and management.  相似文献   

8.
J. Liu  D. Fung  J. Jiang  Y. Zhu 《Indoor air》2014,24(3):327-335
Ultrafine particle (UFP) emissions from three essential‐oil‐based mosquito repellent products (lemon eucalyptus (LE), natural insects (NI), and bite shield (BS)) were tested in a 386 l chamber at a high air exchange rate of 24/h with filtered laboratory air. Total particle number concentration and size distribution were monitored by a condensation particle counter and a scanning mobility particle sizer, respectively. UFPs were emitted from all three products under indoor relevant ozone concentrations (~ 17 ppb). LE showed a nucleation burst followed by a relatively stable and continuous emission while the other two products (NI and BS) showed episodic emissions. The estimated maximum particle emission rate varied from 5.4 × 109 to 1.2 × 1012 particles/min and was directly related to the dose of mosquito repellent used. These rates are comparable to those due to other indoor activities such as cooking and printing. The emission duration for LE lasted for 8–78 min depending on the dose applied while the emission duration for NI and BS lasted for 2–3 h.  相似文献   

9.
Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories, their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test (round robin test, RRT) every two years using well-characterized test materials (one sealant, one furniture board, and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 36 VOCs were included of which 33 gave test chamber air concentrations between 13 and 83 µg/m3. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Three compounds had higher concentrations between 326 and 1105 µg/m3. In this paper, the relative standard deviations (RSD) of BAM round robin tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 28% in 2018. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%.  相似文献   

10.
Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3, H2O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.  相似文献   

11.
Volatile organic compounds (VOCs) as a non-negligible aircraft cabin air quality (CAQ) factor influence the health and comfort of passengers and crew members. On-board measurements of carbonyls (short-chain (C1-C6)) and other volatile organic compounds (VOCs, long-chain (C6-C16)) with a total of 350 samples were conducted in 56 commercial airliner cabins covering 8 aircraft models in this study. The mean concentration for each individual carbonyl compound was between 0.3 and 8.3 μg/m3 (except for acrolein & acetone, average = 20.7 μg/m3) similar to the mean concentrations of other highly detected VOCs (long-chain (C6-C16), 97% of which ranged in 0–10 μg/m3) in aircraft cabins. Formaldehyde concentrations in flights were significantly lower than in residential buildings, where construction materials are known formaldehyde sources. Acetone is a VOC emitted by humans, and its concentration in flights was similar to that in other high-occupant density transportation vehicles. The variation of VOC concentrations in different flight phases of long-haul flights was the same as that of CO2 concentration except for the meal phase, which indicates the importance of cabin ventilation in diluting the gaseous contaminants, while the sustained and slow growth of the VOC concentrations during the cruising phase in short-haul flights indicated that the ventilation could not adequately dilute the emission of VOCs. For the different categories of VOCs, the mean concentration during the cruising phase of benzene series, aldehydes, alkanes, other VOCs (detection rate > 50%), and carbonyls in long-haul flights was 44.2 µg/m3, 17.9 µg/m3, 18.6 µg/m3, 31.5 µg/m3, and 20.4 µg/m3 lower than those in short-haul flights, respectively. Carbonyls and d-limonene showed a significant correlation with meal service (< 0.05). Unlike the newly decorated rooms or new vehicles, the inner materials were not the major emission sources in aircraft cabins. Practical Implications.
  • The on-board measurements of 56 flights enrich the VOC database of cabin environment, especially for carbonyls. The literature review of carbonyls in the past 20 years contributes to the understanding the current status of cabin air quality (CAQ).
  • The analysis of VOC concentration variation for different flight phases, flight duration, and aircraft age lays a foundation for exploring effective control methods, including ventilation and purification for cabin VOC pollution.
  • The enriched VOC data is helpful to explore the key VOCs of aircraft cabin environment and to evaluate the acute/chronic health exposure risk of pollutants for passengers and crew members.
  相似文献   

12.
Emissions from candles are of concern for indoor air quality. In this work, five different types of pillar candles were burned under steady burn conditions in a new laboratory scale system for repeatable and controlled comparison of candle emissions (temperature ~25°C, relative humidity ~13%, O2 >18%, air exchange rate 1.9 h−1). Burn rate, particle number concentrations, mass concentrations, and mode diameters varied between candle types. Based on the results, the burning period was divided in two phases: initial (0–1 h) and stable (1–6 h). Burn rates were in the range 4.4–7.3 and 4.7–7.1 g/h during initial and stable phase, respectively. Relative particle number emissions, mode diameters, and mass concentrations were higher during the initial phase compared to the stable phase for a majority of the candles. We hypothesize that this is due to elevated emissions of wick additives upon ignition of the candle together with a slightly higher burn rate in the initial phase. Experiments at higher relative humidity (~40%) gave similar results with a tendency toward larger particle sizes at the higher relative humidity. Chemical composition with respect to inorganic salts was similar in the emitted particles (dry conditions) compared to the candlewicks, but with variations between different candles.  相似文献   

13.
Data from 5 wet deposition stations and 21 streams during 1980-2006 were analyzed to investigate chemical responses of streams to reduced acidic deposition in the central Appalachian Mountain region of West Virginia, USA. Wet deposition of acidic anions (i.e., sulfate, nitrate, and chloride) and hydrogen ions decreased significantly during the studied time period. Stream sulfate showed a delayed response to the reduced acidic deposition, and showed a decrease in the 2000s (− 5.54 µeq L− 1 yr− 1) and the whole period (− 0.49 µeq L− 1 yr− 1). No significant trend of stream nitrate + nitrite and chloride was observed. Stream alkalinity increased in the 1990s (+ 23.33 µeq L− 1 yr− 1) and the whole period (+ 7.26 µeq L− 1 yr− 1). Stream hydrogen ions decreased in the 1990s (− 0.002 µeq L− 1 yr− 1), 2000s (− 0.001 µeq L− 1 yr− 1), and the whole period (− 0.001 µeq L− 1 yr− 1). Compared with most acidic streams and lakes in the United States and Europe, a lower decreasing rate of hydrogen ions and higher increasing rate of alkalinity were observed in the alkaline West Virginian streams in the 1990s. However, due to their initial negative or zero alkalinity values, those acidic streams showed a higher percent increase in alkalinity than that in the alkaline West Virginian streams (from 800 µeq L− 1 yr− 1 to 1200 µeq L− 1 yr− 1). Total aluminum in the West Virginian streams decreased in the 1990s (− 0.67 µmol L− 1 yr− 1) and the whole period (− 0.22 µmol L− 1 yr− 1). The current study advanced our understanding of streams' responses to the reduced acidic deposition in the Mid-Appalachians since the passage of the 1970 and 1990 Amendments to the United States Clean Air Act (US CAAA).  相似文献   

14.
Singapore is a tropical country with a high density of day-care facilities whose indoor environments may be adversely affected by outdoor fine particle (PM2.5) air pollution. To reduce this problem requires effective, evidence-based exposure-reduction strategies. Little information is available on the penetration of outdoor PM2.5 into day-care environments. Our study attempted to address the following objectives: to measure indoor infiltration factor (Finf) of PM2.5 from outdoor PM2.5 and to determine the building parameters that modify the indoor PM2.5. We collected indoor/outdoor 1-min PM2.5 from 50 day-care classrooms. We noted mean Finf ± SD of 0.65 ± 0.22 in day-care rooms which are naturally ventilated and lower Finf ± SD values of 0.47 ± 0.18 for those that are air-conditioned: values which are lower than those reported in Singapore residences. The air exchange rates were higher in naturally ventilated rooms (1.47 vs 0.86 h−1). However, fine particle deposition rates were lower for naturally ventilated rooms (0.67 ± 0.43 h−1) compared with air-conditioned ones (1.03 ± 0.55 h−1) presumably due to composite rates linked to the filters within the split unit air-conditioners, higher recirculation rates, and interior surfaces in the latter. Our findings indicate that children remaining indoor in daycares where air-conditioning is used can reduce their PM2.5 exposures during outdoor pollution episodes.  相似文献   

15.
This work aims to characterize levels and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in indoor air of preschool environment and to assess the impact of outdoor PAH emissions to indoor environment. Gaseous and particulate (PM1 and PM2.5) PAHs (16 USEPA priority pollutants, plus dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were concurrently sampled indoors and outdoors in one urban preschool located in north of Portugal for 35 days. The total concentration of 18 PAHs (ΣPAHs) in indoor air ranged from 19.5 to 82.0 ng/m3; gaseous compounds (range of 14.1–66.1 ng/m3) accounted for 85% ΣPAHs. Particulate PAHs (range 0.7–15.9 ng/m3) were predominantly associated with PM1 (76% particulate ΣPAHs) with 5‐ring PAHs being the most abundant. Mean indoor/outdoor ratios (I/O) of individual PAHs indicated that outdoor emissions significantly contributed to PAH indoors; emissions from motor vehicles and fuel burning were the major sources.  相似文献   

16.
The emissions of volatile organic compounds (VOCs) from building materials may significantly contribute to indoor air pollution, and VOCs have been associated with odor annoyance and adverse health effects. Wood materials together with coatings are commonly used indoors for furniture and large surfaces such as walls, floors, and ceilings. This leads to high surface-to-volume ratios, and therefore, these materials may participate remarkably to the VOC levels of indoor environment. We studied emissions of VOCs and carbonyl compounds from pinewood (Pinus sylvestris) boards of 10% and 16% moisture contents (MC) with three paints using small-scale test chambers (27 L). The emissions from uncoated pinewood and paints (on a glass substrate) were tested as references. The 28-day experiment showed that the VOC emissions from uncoated pinewood were lower from sample with 16% MC. Painted pinewood samples showed lower emissions compared to paints on glass substrate. Additionally, paints on 16% MC pinewood exhibited lower emissions than on drier 10% MC wood. The emissions from painted pinewood samples were dominated by paint-based compounds, but the share of wood-based compounds increased over time. However, we noticed differences between the paints, and wood-based emissions were clearly higher with the most permeable paint.  相似文献   

17.
We developed a novel, compact upper-room ultraviolet germicidal irradiation system with light-emitting diode sources (UR-UVGI-LED) to enhance the disinfection of bioaerosols in an enclosed room space. Its effectiveness was evaluated and compared with the conventional upper-room ultraviolet germicidal irradiation system with mercury vapor sources (UR-UVGI-MV). Escherichia coli, Serratia marcescens, and Staphylococcus epidermidis were atomized under the well-mixed condition and exposed to UR-UVGI-LED (or UR-UVGI-MV) device. The intensity output of the UR-UVGI-LED was also varied from 0% (no LED), 25%, 50% to 100% to further evaluate the UR-UVGI-LED disinfection effectiveness under different power levels. The decay rates for UR-UVGI-LED ranged from −0.1420 ± 0.04 min−1 to −0.3331 ± 0.07 min−1 for Escherichia coli, −0.1288 ± 0.01 min−1 to −0.3583 ± 0.02 min−1 for Serratia marcescens, and −0.0330 ± 0.01 min−1 to −0.0487 ± 0.01 min−1 for Staphylococcus epidermidis. It was noticed that the intensity level had a non-linear influence on the UR-UVGI-LED’s performance. The decay rates achieved by the UR-UVGI-MV system were −0.3867 ± 0.08 min−1, −0.4745 ± 0.002 min−1, and −0.1624 ± 0.02 min−1 for Escherichia coli, Serratia marcescens, and Staphylococcus epidermidis, respectively. Hence, the disinfection performance of both UR-UVGI-LED and UR-UVGI-MV systems was comparable for Escherichia coli and Serratia marcescens. These results demonstrate that the UR-UVGI-LED system has a high potential to be used as a safe and effective irradiated light source to disinfect indoor airborne pathogens.  相似文献   

18.
《Building and Environment》2005,40(11):1566-1571
Based on an averaging technique, a methodology has been established to estimate an effective radon emanation factor M for residential premises. The model shows that the new term M and the ventilation rate are the essential parameters in estimating the level of indoor radon. M includes two components: the radon emanation rates of internal surface materials and the ratio of surface areas of applicable materials to premises volume. The value of M can be determined from on-site measurements. Different ventilation modes of a sampled residential unit during daytime and nighttime, with air conditioner on, window-open, and window-closed were included in site measurements. Each ventilation mode was measured twice during daytime and twice at night. During the investigation, air exchange rate, and indoor and outdoor radon levels were monitored simultaneously. The results of measurements were then used to verify the model. The value of M was found to be 31.7 Bq m−3 h−1. The model is valid if the air exchange rate is larger than 0.2 h−1.  相似文献   

19.
Aqueous diffusion of trichloroethylene (TCE) and tetrachloroethylene (PCE) is examined for high density polyethylene (HDPE), linear low density polyethylene (LLDPE), polyurethane/urea, and two polyethylene (PE) geomembranes coextruded with ethylene vinyl alcohol (EVOH). Additionally, the diffusion of benzene, toluene, ethylbenzene, and xylenes through polyurethane/urea geomembrane is examined. Permeation coefficients for HDPE, LLDPE, and polyurethane/urea range from 0.4-1.2 × 10−10 m2/s for TCE and 1.0-2.5 × 10−10 m2/s and for PCE. Experiments using the coextruded geomembranes have not reached equilibrium at 500 days, however parameters for the EVOH layer are deduced using data from these experiments. Using the parameters of the individual layers, single layer parameters were calculated. These single layer parameters range from 0.37-2.2 × 10−12 m2/s for TCE to 0.28-0.93 × 10−12 m2/s for PCE. Two hypothetical vapour intrusion cases are modelled using the parameters developed for the five geomembranes, and the calculated airspace concentrations decrease depending on the choice of vapour barrier in the following order: no barrier >0.75 mm LLDPE >1.5 mm polyurethane/urea >1.5 mm HDPE >0.75 mm LLDPE/EVOH/LLDPE >1.5 mm HDPE/EVOH/HDPE.  相似文献   

20.
The thermal degradation of plywood was investigated using thermogravimetric analysis (TGA) device. The TGA experiments were conducted between ambient temperature and 1000 °C for seven different heating rates: 5, 10, 15, 20, 30, 40 and 50 °C min−1. The experiments were realized under inert and air atmospheres in order to characterize the plywood thermal decomposition occurring during the pyrolysis and oxidative processes. Throughout all the tests, the gaseous emissions were continuously monitored using a Fourier transformed infra-red spectrometer (FTIR). The progress in the mass, the mass-loss rate (MLR) and gas emissions data allow to propose a mechanism of the thermal decomposition of plywood with six different stages. The reactions (stages) of this mechanism is of a rate represented by a modified Arrhenius law containing four unknown kinetic parameters (A, Ea, n and ν) for each reaction. These 24 unknown parameters are determined by using the inverse optimization method of the genetic algorithms. The model developed is validated regardless of the heating rate and atmosphere (inert or air) chosen. A very good agreement is obtained between the experimental and the numerical mass loss rate evolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号