首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
Water treatment residual solids were examined in batch adsorption and column adsorption experiments using a groundwater from Halifax Regional Municipality that had an average arsenic concentration of 43 μg/L (±4.2 μg/L) and a pH of 8.1. The residual solids studied in this paper were from five water treatment plants, four surface water treatment plants that utilized either alum, ferric, or lime in their treatment systems, and one iron removal plant. In batch adsorption experiments, iron-based residual solids and lime-based residual solids pre-formed similarly to GFH, a commercially-available adsorbent, while alum-based residual solids performed poorly. Langmuir isotherm modeling showed that ferric residuals had the highest adsorptive capacity for arsenic (Qmax = 2230 mg/kg and 42,910 mg/kg), followed by GFH (Qmax = 640 mg/kg), lime (Qmax = 160 mg/kg) and alum (Qmax = <1 mg/kg and 3 mg/kg). Similarly, the maximum arsenic removal was >93% for the ferric and lime residuals and GFH, while the maximum arsenic removal was <49% for the alum residuals under the same conditions. In a column adsorption experiment, ferric residual solids achieved arsenic removal of >26,000 bed volumes before breakthrough past 10 μg As/L, whereas the effluent arsenic concentration from the GFH column was under the method detection limit at 28,000 bed volumes. Overall, ferric and lime water treatment residuals were promising adsorbents for arsenic adsorption from the groundwater, and alum water treatment residuals did not achieve high levels of arsenic adsorption.  相似文献   

2.
Wei YT  Zheng YM  Chen JP 《Water research》2011,45(6):2290-2296
Methylated arsenic in groundwater has caused a series of health problems to human beings. A N-methylglucamine modified chitosan polymeric adsorbent was successfully developed for efficient adsorption of methylated arsenic from water solution. Adsorption behaviors of two common methylated arsenic species, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), onto the adsorbent were investigated in this paper. The surface modification increased the adsorption capabilities for the arsenic. The uptake of MMA was higher than that of DMA throughout all pH values. The maximum adsorption capacities were 15.4 mg/g for MMA and 7.1 mg/g for DMA, exhibiting competitive advantages with other reported materials. The affinity of these arsenic species for the adsorbent followed a pattern of MMA > DMA. The adsorption equilibrium was achieved within 20 h. The uptake of MMA and DMA was dependent upon the concentration of background electrolytes, indicating the formation of outer-sphere complexes of both organoarsenic species with the adsorbent during the adsorption. The existence of natural organic matter and competitive anions cause decrease in the uptake of both arsenic species. Furthermore, the simultaneous uptake of organic contaminants such as humic acid was observed. The spectroscopic analysis demonstrated the strong attachment of both organic arsenic species onto the amine functional group of the adsorbent.  相似文献   

3.
Dhoble RM  Lunge S  Bhole AG  Rayalu S 《Water research》2011,45(16):4769-4781
Magnetic binary oxide particles (MBOP) synthesized using chitosan template has been investigated for uptake capacity of arsenic (III). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherm and also effect of various rate limiting factors including adsorbent dose, pH, optimum contact time, initial adsorbate concentration and influence of presence cations and anions. It was observed that uptake of arsenic (III) was independent of pH of the solution. Maximum adsorption of arsenic (III) was ∼99% at pH 7.0 with dose of adsorbent 1 g/L and initial As (III) concentration of 1.0 mg/L at optimal contact time of 14 h. The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherm. The maximum adsorption capacity of adsorbent was 16.94 mg/g. With increase in concentration of Ca2+, Mg2+ from 50 mg/L to 600 mg/L, adsorption of As (III) was significantly reduced while for Fe3+ the adsorption of arsenic (III) was increased with increase in concentration. Temperature study was carried out at 293 K, 303 K and 313 K reveals that the adsorption process is exothermic nature. A distinct advantage of this adsorbent is that adsorbent can readily be isolated from sample solutions by application of an external magnetic field. Saturation magnetization is a key factor for successful magnetic separation was observed to be 18.78 emu/g which is sufficient for separation by conventional magnate.  相似文献   

4.
5.
J Han  W Qiu  S Meng  W Gao 《Water research》2012,46(17):5715-5724
This study demonstrates the use of aliphatic polyamides (PAs) as efficient adsorbents for the removal of ethinylestradiol (EE2), a synthetic hormone and high-potency estrogenic contaminant, from water via strong adsorptive interactions. PA612 and PA12 showed significantly higher adsorption capacities than PA6 for EE2 adsorption from water. Isothermal adsorption studies showed that PA612 had an adsorption capacity for EE2 comparable to the benchmark macroreticular polymeric adsorbent, AMBERLTIE XAD4 (XAD4), despite its nonporous structure and far smaller surface area. The substantial adsorption of EE2 on PA612 is predominantly driven by Lewis acid-base interactions between EE2 and PA612 amide functionalities and facilitated by the hydrophobic partitioning of EE2 solutes in water. Rapid column adsorption tests demonstrated efficient removal of EE2 from water on a continuous flow basis. With an empty bed contact time of 0.8-1.0 min, the fixed-bed column with 1.0 g PA612 particles removed the EE2 from 24.1 L of 30 μg L−1 EE2 spiked solution to non-detectable levels by HPLC analysis. Regeneration was readily effected by rinsing the exhausted column with 4 wt.% NaOH solution at room temperature. Regenerated PA612 particles showed consistent performance to fresh PA612 particles in subsequent batch and column adsorption studies.  相似文献   

6.
The adsorption of arsenic (V) by granular iron hydro(oxides) has been proven to be a reliable technique. However, due to the low mechanical properties of this material, it is difficult to apply it in full scale water treatment. Hence, the aim of this research is to develop a methodology to anchor iron hydro(oxide) nanoparticles onto activated carbon, in which the iron hydro(oxide) nanoparticles will give the activated carbon an elevated active surface area for arsenic adsorption and also help avoid the blockage of the activated carbon pores. Three activated carbons were modified by employing the thermal hydrolysis of iron as the anchorage procedure. The effects of hydrolysis temperature (60-120 °C), hydrolysis time (4-16 h), and FeCl3 concentration (0.4-3 mol Fe/L) were studied by the surface response methodology. The iron content of the modified samples ranged from 0.73 to 5.27%, with the higher end of the range pertaining to the carbons with high oxygen content. The materials containing smaller iron hydro(oxide) particles exhibited an enhanced arsenic adsorption capacity. The best adsorbent material reported an arsenic adsorption capacity of 4.56 mg As/g at 1.5 ppm As at equilibrium and pH 7.  相似文献   

7.
A study on the removal of arsenic from real life groundwater using iron–chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model for iron chitosan flakes (ICF) (22.47 ± 0.56 mg/g for As(V) and 16.15 ± 0.32 mg/g for As(III)) was found to be considerably higher than that obtained for iron chitosan granules (ICB) (2.24 ± 0.04 mg/g for As(V); 2.32 ± 0.05 mg/g for As(III)). Anions including sulfate, phosphate and silicate at the levels present in groundwater did not cause serious interference in the adsorption behavior of arsenate/arsenite. The column regeneration studies were carried out for two sorption–desorption cycles for both As(III) and As(V) using ICF and ICB as sorbents. One hundred and forty-seven bed volumes of As(III) and 112 bed volumes of As(V) spiked groundwater were treated in column experiments using ICB, reducing arsenic concentration from 500 to <10 μg/l. The eluent used for the regeneration of the spent sorbent was 0.1 M NaOH. The adsorbent was also successfully applied for the removal of total inorganic arsenic down to <10 μg/l from real life arsenic contaminated groundwater samples.  相似文献   

8.
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h−1) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.  相似文献   

9.
Zeng L 《Water research》2003,37(18):4351-4358
A method for preparing iron(III)-based binary oxide adsorbents in a granulated form for arsenic removal was studied. The key step in the method was the simultaneous generation of hydrous ferric oxide (FeOOH) sol and silica sol in situ in one reactor. This eventually led to the formation of Fe-Si complexes. The addition of silica enhanced the granulated adsorbent strength but reduced the arsenic adsorption capacity. An optimum Si/Fe molar ratio in the balance of adsorbent strength and arsenic adsorption capacity was found to be approximately 0.33. The effects of aging time, drying temperature and process pH on adsorbents were also evaluated in the study. X-ray diffraction analysis confirmed that the iron(III) oxide in the Fe-Si binary oxide adsorbents was amorphous, largely due to the retardation of the iron oxide crystallization by the presence of silicate species. The surface area of the Fe-Si adsorbents and the particle size of Fe-Si complexed suspensions were determined as well. The batch strength testing procedure introduced in this study can provide a simple and quick evaluation of granulate strength in a wet status. Generally, this developed method can prepare granulated Fe-Si binary oxide adsorbents for column adsorption of arsenic from water.  相似文献   

10.
Zhang Y  Zhou JL 《Water research》2005,39(16):3991-4003
Endocrine disrupting chemicals (EDCs) are the focus of current environment concern, as they can cause adverse health effects in an intact organism, or its progeny, subsequent to endocrine function. The paper reports on the removal of estrone (E1) and 17beta-estradiol (E2) from water through the use of various adsorbents including granular activated carbon (GAC), chitin, chitosan, ion exchange resin and a carbonaceous adsorbent prepared from industrial waste. The results show that the kinetics of adsorption were adsorbent and compound-dependent, with equilibration being reached within 2 h for a waste-derived carbonaceous adsorbent to 71 h for an ion-exchange resin for E1, and within 7 h for the waste-derived carbonaceous adsorbent to 125 h for GAC for E2. Of all the adsorbents tested, the carbonaceous adsorbent showed the highest adsorption capacity, with a maximum adsorption constant of 87500 ml/g for E1 and 116000 ml/g for E2. The GAC also had a very high adsorption capacity for the two compounds, with a maximum adsorption constant of 9290 ml/g for E1 and 12200 ml/g for E2. The effects of some fundamental environmental parameters including adsorbent concentration, pH, salinity and the presence of humic acid and surfactant on adsorption were studied. The results show that adsorption capacity of activated carbon was decreased with an increase in adsorbent concentration and by the presence of surfactant and humic acid. The results have demonstrated excellent performance of a waste derived adsorbent in removing E1 and E2 from water, and indicated the potential of converting certain solid waste into useful adsorbents for pollution-control purposes.  相似文献   

11.
Wu R  Qu J  Chen Y 《Water research》2005,39(4):630-638
Fine powder adsorbents or catalysts often show better adsorptive or catalytic properties, but they encounter the difficulties of separation and recovery in application. In this study, four inexpensive magnetic powder MnO-Fe2O3 composites used as adsorbent-catalyst materials were prepared and characterized. These materials could be recovered efficiently by a magnetic separation method. Their adsorptive properties for the removal of an azo-dye, acid red B (ARB), from water and the regeneration of adsorbents containing ARB by catalytic combustion was studied. These powder adsorbents showed excellent adsorption towards ARB under acidic conditions. A very fast adsorption rate was observed and could be well described by a pseudo-second-order kinetics model. The adsorption capacity increased with increasing Fe content and surface area of the adsorbent, and the highest adsorption capacity of 105.3 mg/g was obtained at pH 3.5. The adsorption was not affected by the presence of Cl-, but was significantly affected by SO4(2-). The adsorbent containing ARB can be regenerated by catalytic combustion of adsorbed ARB at 400 degrees C in air. Laboratory experiments demonstrated that this material is reusable.  相似文献   

12.
Iesan CM  Capat C  Ruta F  Udrea I 《Water research》2008,42(16):4327-4333
The objective of this paper is the evaluation of a hybrid inorganic/organic polymer type material based on hydrated ferric oxide (HFO), in the adsorption process of arsenic oxyanions from contaminated waters used as drinking water. The study includes rapid small-scale column tests conducted in continuous flow operation in order to assess the arsenic removal capacity in various conditions. Thus it was evaluated the influence of some competing ions like silicate and phosphate on As(V) adsorption and the influence of feed water pH in the removal process of As(V) and As(III) species. Based on the As/pH variation in time at different feed water pH (5, 7 and 9), a possible sorption mechanism that fits the experimental data was suggested. The regeneration and re-use of the hybrid adsorbent was studied in the presence and in the absence of the contaminant ions. The novel hybrid material is very selective towards arsenic oxyanions even though the presence of silica and phosphate reduces the adsorption capacity.  相似文献   

13.
Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6-1.7 gLAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activated carbons, result in a lower adsorption capacity of 0.02-0.6 gLAS/g. Negatively charged materials, such as cation exchange resins or bentonite clay, have negligible adsorption capacities for LAS. Similar results are obtained for alpha olefin sulfonate (AOS). Cost comparison of different adsorbents shows that an inorganic anion exchange material (layered double hydroxide) and activated carbons are the most cost-effective materials in terms of the amount of surfactant adsorbed per dollar worth of adsorbent.  相似文献   

14.
Gupta VK  Gupta B  Rastogi A  Agarwal S  Nayak A 《Water research》2011,45(13):4047-4055
Waste rubber tire has been used for the removal of pesticides from waste water by adsorption phenomenon. By applying successive chemical and thermal treatment, a basically cabonaceous adsorbent is prepared which has not only a higher mesopore, macropore content but also has a favorable surface chemistry. Presence of oxygen functional groups as evidenced by FTIR spectra along with excellent porous and surface properties were the driving force for good adsorption efficiency observed for the studied pesticides: methoxychlor, methyl parathion and atrazine. Batch adsorption studies revealed maximum adsorption of 112.0 mg g−1, 104.9 mg g−1 and 88.9 mg g−1 for methoxychlor, atrazine and methyl parathion respectively occurring at a contact time of 60 min at pH 2 from an initial pesticide concentration of 12 mg/L. These promising results were confirmed by column experiments; thereby establishing the practicality of the developed system. Effect of various operating parameters along with equilibrium, kinetic and thermodynamic studies reveal the efficacy of the adsorbent with a higher adsorption capacity than most other adsorbents. The adsorption equilibrium data obey Langmuir model and the kinetic data were well described by the pseudo-first-order model. Applicability of Bangham’s equation indicates that diffusion of pesticide molecules into pores of the adsorbent mainly controls the adsorption process. Spontaneous, exothermic and random characteristics of the process are confirmed by thermodynamic studies. The developed sorbent is inexpensive in comparison to commercial carbon and has a far better efficiency for pesticide removal than most other adsorbents reported in literature.  相似文献   

15.
The application of anion-exchange resins (AERs) is limited by fouling, which increases the fresh resin dosage, regeneration frequency, and amount of regeneration effluent. In this study, five AERs with different Fe3O4 amounts was prepared by increasing the amount of Fe3O4 added to 100 g of monomer mixture for suspension polymerization from 0 g to 40 g. Results showed considerably improved pore volume and hydrophilicity of the resin with increased Fe3O4 content, leading to significantly enhanced adsorption and desorption of humic acid. A method of developing novel resins with enhanced adsorption and antifouling abilities by incorporating Fe3O4 was then proposed. The adsorbent structure resulting from the incorporated inorganic particles was found to be important in determining the adsorption behavior of a hybrid adsorbent.  相似文献   

16.
Magnetite nanoparticles were used to treat arsenic‐contaminated water. Because of their large surface area, these particles have an affinity for heavy metals by adsorbing them from a liquid phase. The results of the study showed that the maximum arsenic adsorption occurred at pH 2, with a value of approximately 3.70 mg/g for both As(III) and As(V) when the initial concentration of both arsenic species was maintained at 2 mg/L. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on the contact time, the initial concentration of arsenic, the phosphate concentration in the water and the adsorbent concentration. The results suggest that arsenic adsorption involved the formation of weak arsenic–iron oxide complexes at the magnetite surface. At a fixed adsorbent (magnetite nanoparticles) concentration of 0.4 g/L, percent arsenic removal decreased with increasing phosphate concentration. Magnetite nanoparticles removed <50% of arsenic from water containing >6 mg/L phosphate. In this case, an optimum design for achieving high arsenic removal by magnetite nanoparticles may be required.  相似文献   

17.
Highly porous, nanostructured zirconium oxide spheres were fabricated from ZrO2 nanoparticles with the assistance of agar powder to form spheres with size at millimeter level followed with a heat treatment at 450 °C to remove agar network, which provided a simple, low-cost, and safe process for the synthesis of ZrO2 spheres. These ZrO2 spheres had a dual-pore structure, in which interconnected macropores were beneficial for liquid transport and the mesopores could largely increase their surface area (about 98 m2/g) for effective contact with arsenic species in water. These ZrO2 spheres demonstrated an even better arsenic removal performance on both As(III) and As(V) than ZrO2 nanoparticles, and could be readily applied to commonly used fixed-bed adsorption reactors in the industry. A short bed adsorbent test was conducted to validate the calculated external mass transport coefficient and the pore diffusion coefficient. The performance of full-scale fixed bed systems with these ZrO2 spheres as the adsorber was estimated by the validated pore surface diffusion modeling. With the empty bed contact time (EBCT) at 10 min and the initial arsenic concentration at 30 ppb, the number of bed volumes that could be treated by these dry ZrO2 spheres reached ∼255,000 BVs and ∼271,000 BVs for As(III) and As(V), respectively, until the maximum contaminant level of 10 ppb was reached. These ZrO2 spheres are non-toxic, highly stable, and resistant to acid and alkali, have a high arsenic adsorption capacity, and could be easily adapted for various arsenic removal apparatus. Thus, these ZrO2 spheres may have a promising potential for their application in water treatment practice.  相似文献   

18.
Adsorption and desorption of arsenic on an oxisol and its constituents   总被引:8,自引:0,他引:8  
The present work investigates the adsorption and mobility (desorption) of As(III) and As(V) on an oxisol, and its main mineral constituents, as part of a broader project aimed at selecting a soil liner to be used in tailings dams at a sulfidic gold ore plant. Emphasis was given to a quantitative comparison of As mobility-here assessed by the amount of As leached from the loaded samples-under different experimental conditions. From among the soil constituents, goethite was the most efficient adsorbent with regard to arsenic adsorption, 12.4 mg x g(-1) for As(V) and 7.5 mg x g(-1) for As(III), respectively. Gibbsite also presented a relevant adsorption capacity (4.6 mg x g(-1) for As(V) and 3.3 mg x g(-1) for As(III)); adsorption on kaolinite was negligible (<0.23 mg x g(-1) for As(V) and As(III)). Desorption of the arsenic was shown to vary largely with the arsenic oxidation state, the adsorbents and the leaching solutions. While only 1-2% max. of As(V) was released from the loaded samples, leaching the A(III) reached 32%, the highest values corresponding to the solutions containing sulfate ions. Oxisol and goethite were superior to gibbsite with respect to As immobilization. Adsorption and mobility were also discussed with the help of electrophoretic mobility and isoelectric points (IEP) determined prior and following arsenic adsorption on goethite and gibbsite. The results indicated that As(V) is mainly adsorbed as an inner sphere complex. As(III) may be adsorbed as an inner or an outer neutral complex.  相似文献   

19.
Copper and zinc removal from water (pH = 5.0) using adsorbents produced from slow and fast pyrolysis of industrial sludge and industrial sludge mixed with a disposal filter cake (FC), post treated with HCl, is investigated in comparison with a commercial adsorbent F400. The results show that a pseudo-second order kinetics model is followed. The Langmuir-Freundlich isotherm model is found to fit the data best. The capacity for heavy metal removal of studied adsorbents is generally better than that of commercial F400. The dominant heavy metal removal mechanism is cation exchange. Higher heavy metal removal capacity is associated with fast pyrolysis adsorbents and sludge/FC derived adsorbents, due to enhanced cation exchange. Improvement of Zn2+ removal via 1 N HCl post-treatment is only effective when exchangeable cations of the adsorbent are substituted with H+ ions, which boost the cation exchange capacity. Increase of temperature also enhances metal removal capacity. Fast pyrolysis sludge-based adsorbents can be reused after several adsorption-desorption cycles.  相似文献   

20.
Pan ZH  Tian JY  Xu GR  Li JJ  Li GB 《Water research》2011,45(2):819-827
Meso-macropore adsorbents were prepared from biological sludge, chemical sludge and hybrid sludge of biological and chemical sludges, by chemically activating with 18.0 M H2SO4 in the mass ratio of 1:3, and then pyrolyzing at 550 °C for 1 h in anoxic atmosphere. The physical and chemical characteristics of the sludge-based adsorbents were examined in terms of surface physical morphology, specific surface area and pore size distribution, aluminum and iron contents, surface functional groups and crystal structure. Furthermore, the adsorption effect of these adsorbents on the organic substances in wastewater was also investigated. The results indicated that the adsorption capacities of the sludge-based adsorbents for UV254 were lower than that of commercial activated carbon (AC), whereas the adsorption capacities of the adsorbents prepared from hybrid sludge (HA) and chemical sludge (CA) for soluble CODCr (SCODCr) were comparable or even higher than that of the commercial AC. The reasons might be that the HA and CA possessed well-developed mesopore and macropore structure, as well as abundant acidic surface functional groups. However, the lowest adsorption efficiency was observed for the biological sludge-based adsorbent, which might be due to the lowest metal content and overabundance of surface acidic functional groups in this adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号