首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
在兰州市榆中县和平镇38~42m厚自重湿陷性黄土场地上,做直径20m圆形试坑的现场浸水试验,试验持时69d,其中浸水观测62d、停水后观测7d,总用水量4346m3.重点考察了湿陷性黄土的湿陷范围、湿陷速率变化规律及裂缝发展规律.试验结果表明,湿陷性黄土的湿陷有一定范围,15m以下沉降量较小,渗透最大影响深度约为25m,且大厚度自重湿陷性黄土湿陷范围呈先局部后整体,先近后远,近密远疏,逐步扩展的变化规律.  相似文献   

2.
结合国家重点工程建设项目--宁夏扶贫扬黄灌溉工程11号泵站地基的预浸水处理,在自重湿陷性黄土厚度大于35m的场地上做了面积为110×70m2的浸水试验,试验历时251d,揭示出大厚度自重湿陷性黄土的湿陷变形具有与中小厚度(小于15m)自重湿陷性黄土的湿陷变形不同的3个显著特征:①湿陷量随浸水历时的发展过程包含5个阶段,即初期平缓段、浸水陡降段、中期平缓段、停水后的陡降段和后期平缓段;②湿陷速率在浸水期间呈显“小→大→小→稳定”的变化规律,在停水后则呈显“大→小→稳定”的变化规律;③湿陷量、试坑周边裂缝的宽度和裂缝两侧地面的高差远远大于既往同类研究记录。通过分析,建议把连续5d的平均湿陷量不大于2mm作为大厚度自重湿陷性黄土场地浸水试验的停止注水标准;采用建议的停水标准,缩短了该建设项目的工期、节省了费用。本文的研究成果可供今后类似的地基处理工程及修订黄土规范参考。  相似文献   

3.
选用4个不同处理深度的灰(素)土桩对大厚度自重湿陷性黄土场地进行挤密处理,并对挤密区域以下未处理土层进行深层浸水试验,研究在该浸水条件下大厚度自重湿陷性黄土地基的湿陷变形规律、处理深度和剩余湿陷量合理控制等问题。试验结果表明:灰土和素土在处理大厚度自重湿陷性黄土地基时,两者挤密效果表现差异不大;深层浸水情况下,6~15 m深度处理区域产生的变形量均不能满足上部荷载的变形要求,且呈现三段式变形规律,先期稳定,中期缓降,后期突降;根据现场浸水试验和桩基中性点相关研究,首次提出大厚度自重湿陷性黄土地区“湿陷临界深度”的概念,并初步将其确定为20~25 m,据此可以一定程度上减小深部土层剩余湿陷量,达到减小地基处理深度的目的;建议将15~20和10~15 m分别作为大厚度自重湿陷性黄土地基乙、丙类建筑的最大处理深度。  相似文献   

4.
 为解决大厚度自重湿陷性黄土地区地基处理深度和湿陷性评价等难题,在湿陷性黄土厚度大于36.5 m的场地进行以下浸水试验:不同深度的挤密桩处理地基深层浸水载荷试验,不同深度的孔内深层强夯处理地基载荷浸水试验,不打注水孔、埋设TDR水分计的原位浸水试验。研究结果表明:(1) 大厚度自重湿陷性黄土地基处理6~12 m、深层浸水时,发生显著地基下沉;15~20 m时,地基沉降较小;处理深度大于20 m时,地基沉降基本可忽略。(2) 浸水试坑22.5~25.0 m以上土体含水率增加较快,甚至达到饱和,以下土体含水率增加缓慢,基本没有发生湿陷。建议22.5~25.0 m作为大厚度自重湿陷性黄土地基处理和湿陷性评价的临界深度。(3) 大厚度自重湿陷性黄土地基在采取有效的综合处理措施之后,甲类建筑可以不全部消除湿陷量,乙、丙类建筑可以根据控制建议适当放宽对剩余湿陷量的要求。(4) 不同地区、不同微结构类型土的湿陷性应当采用不同的湿陷系数 来判定,即“湿陷系数 = 0.015”在自基础底面至基底下15 m的范围内可继续使用;15 m以下适当放宽,按不同深度对 进行修正,可使大厚度自重湿陷性黄土湿陷性评价趋于合理,有效节约大量地基处理费用。  相似文献   

5.
为了研究大厚度湿陷性黄土地层的湿陷性对城市轨道交通地下结构的影响,针对传统室内试验评价结果不准确的缺点,依托兰州地铁3号线一期工程—陡道沟站,选取典型大厚度湿陷性黄土施工场地,通过开展场地地面浸水试验,测试了地面入渗过程中不同深度地层的湿陷沉降变形及地表的沉降变形,研究了既有黄土地层的湿陷变形特性,并结合室内试验的结果进行验证。结果表明:①场地内黄土的湿陷性具有突发性的特点,地表土层及深部土层的湿陷变形大体呈现陡增、骤降和平稳三个阶段;②场地内黄土的湿陷系数随着黄土深度的增加而降低,自重湿陷系数与深度的关系曲线符合幂函数关系,相关性为0.983;③兰州地区湿陷性黄土地层自重湿陷变形计算值的修正系数建议取值为1.675。研究结果可为兰州地区大厚度湿陷性黄土地层地铁设计及施工提供借鉴。  相似文献   

6.
通过在关中地区五个湿陷性黄土场地上所进行的10个试坑浸水试验和21个浸水载荷试验,本文详细讨论了黄土地基自重湿陷变形和外荷湿陷变形的规律以及有关场地湿陷类型的判别问题.  相似文献   

7.
关中地区黄土的湿陷变形   总被引:2,自引:0,他引:2  
钱鸿缙  涂光祉 《工业建筑》1996,26(7):41-45,51
根据在关中湿陷性黄土地区5个场地上所进行的10个试坑浸水试验和19个浸水载荷试验结果,详细讨论了黄土地基自重湿陷变形和外荷湿陷变形的规律以及有关场地湿陷类型的判别问题。  相似文献   

8.
湿陷性黄土场地分为非自重湿陷性黄土场地和自重湿陷性黄土场地两种。现行国家标准《湿陷性黄土地区建筑规范》(GB50025-2004)规定,当自重湿陷量的计标值Δ2S或实测值Δ’2S小于7cm时,应定为非自重湿陷性黄土场地;当自重湿陷量的计标值Δ2S或实测值Δ’2S等于或大于7cm时,应定为自重湿陷性黄土场地。在缺乏建筑经验的新建地区,为确定甲类建筑和地基受水浸湿可能性大的乙类建筑的场地湿陷类型,通常在工程现场采用试坑浸水试验的自重湿陷量的实测值确定。浸水试验的试坑多为方形或圆形,试坑尺寸可按湿陷性黄土的厚度确定。试坑面积一般为100m2(10m×10m)~400m2(20m×20m),试坑深度为地面下50cm~80cm。为测量试坑内外在浸水过程中的沉降,浸水前在试坑底面和四周,可埋设若干不同深度的标点。试坑底面应铺设10cm~15cm的砂石。试坑自浸水开始之日起至浸水结束止,在浸水过程中每天应记录水表读数,不得停止浸水,试坑内水深约30cm。本试验包括1.试验场地工程地质概况;2.试坑浸水试验1试坑尺寸的确定;2标点的设置;3向试坑内浸水;3.试验结果1自重湿陷变形范围;2实测自重湿陷量与计算自重湿陷量的比较;3试坑浸水前、后土的含水量及饱和度的比较;4.结论。  相似文献   

9.
大厚度自重湿陷黄土湿陷变形评价方法的研究   总被引:1,自引:0,他引:1  
黄土湿陷变形是地基工程的关键问题。依据大量的现场试坑浸水试验和室内湿陷性试验结果,区分不同黄土地区,分析了场地浸水自重湿陷变形实测值与计算值之间的关系,表明陇西地区、陇东—陕北—晋西地区、关中地区和其他地区自重湿陷变形计算值的修正系数分别为2.0,1.7,1.2,0.4。依据典型场地黄土自重湿陷系数、自重湿陷变形、地层结构随深度的变化特征,通过现场试验实测不同埋深黄土自重湿陷变形的平均自重湿陷系数与室内试验测试自重湿陷系数的加权平均值之间的关系,揭示0~10 m,10~15 m,15~20 m不同埋深范围黄土原位浸水产生自重湿陷变形时,对应的室内试验自重湿陷系数的加权平均值依次为0.015,0.020,0.025,确定了大厚度自重湿陷性黄土的自重湿陷系数起始门槛值。关中地区不同场地Q2黄土的自重湿陷变形实测值一般小于7.0 cm。该地区不同场地Q2黄土的自重湿陷系数的均值约为0.029,其自重湿陷系数的起始门槛值可取0.025。  相似文献   

10.
通过在大厚度自重湿陷性黄土场地上进行大规模原位浸水试验,在浸水坑的不同位置和深度埋设TDR水分计,对水在竖向和水平向的入渗运移规律进行实测,研究黄土在地面浸水后的入渗规律与自重湿陷变形规律及其相互关系。研究表明:(1)水在土体中的入渗规律是水沿大孔隙先向下入渗,然后再渗透扩大饱和区的运移过程;(2)在水分的入渗过程中,深度22.5~25.0 m以上土体发生自重湿陷变形,以下土体含水量增加缓慢,达不到湿陷起始含水量,没有发生自重湿陷变形,因此,可考虑22.5~25.0 m作为现场湿陷性评价的临界深度,另外该深度可作为大厚度湿陷性黄土地区进行地基处理时的参考地基处理下限深度;(3)由TDR水分计得出的体积含水率变化曲线不仅可以用来测量体积含水率的时空变化,而且可以用来判定黄土是否发生湿陷变形以及湿陷敏感性和湿陷系数随深度的变化规律,也可粗略计算水在非饱和黄土中的扩散速度。  相似文献   

11.
黄土围岩潜在的湿陷变形不利于隧道工后的安全稳定,为深入研究黄土围岩湿陷变形对隧道结构的影响机制,在已建黄土隧道场地开展大面积试坑浸水试验,研究湿陷性黄土围岩的渗水分布场、湿陷变形发展规律及隧道结构的受力变形规律。表明隧道开挖促使黄土围岩原生竖向节理、裂隙发育,易形成贯通地表的竖向裂缝,增大了深层黄土竖向渗水能力,地表水易于向深层土运移。隧道开挖扰动了黄土围岩原有结构,改变了深层黄土的湿陷变形特性,遭浸水作用后产生较原位土层湿陷变形更大的沉降变形。当水分入渗接近隧道埋深,围岩承载拱作用的减弱甚至消失,会显著地增大隧道围岩压力及传至基底的压缩应力,并在拱脚位置形成应力集中,引发拱脚下沉,而仰拱中部地基的弹性抗力抑制中部沉降变形发展,显著的不均匀沉降差导致仰拱中部开裂,形成纵向裂缝。对于埋深较浅的黄土隧道,应避免隧道上方地表出现长期浸水的情况;设计施工中应充分考虑拱脚地基承载能力不足的情况,可加强仰拱刚度以抵御不均匀沉降的发展。  相似文献   

12.
为了揭示隧道穿越的非饱和黄土场地及隧道地基的湿陷变形特性,在隧道上部进行原位试坑浸水试验,分别在试坑的不同位置、深度布置TDR水分计和沉降标点来实测水分的入渗情况和土体的湿陷变形。研究表明:(1)水在非饱和黄土中渗透时优先向大孔隙通道运移,然后逐步扩大至饱和区,具体表现为前一点尚未饱和,下一点已有水分到达;(2)利用TDR水分计可以实时测量水分在土体空间中的运移扩散情况,也可以估算出水在非饱和黄土中的扩散速率,同时由测量所得体积含水率变化曲线可以判定黄土是否发生湿陷变形;(3)黄土场地中的分层湿陷量、湿陷速率随着土层深度的增加而减小,湿陷性黄土的浅层处比深层处具有更大的敏感性和危害性;(4)该试验场地处约15 m以上土层性质比较接近,土体密实度相对较小,水分入渗较快,易于产生湿陷变形,而15 m以下土体较密实,工程性质相对稳定。  相似文献   

13.
结构性黄土的变形特性   总被引:7,自引:4,他引:7  
针对结构性黄土研究中的不足和存在的问题,以原状结构性黄土样和人工制备结构性黄土样2种试样的室内侧限压缩试验、等含水量三轴剪切试验和浸水变形试验以及等吸力三轴剪切试验为基础,研究了结构性黄土的湿陷及变形特性。结果表明,结构性黄土存在一个与广义应力路径无关的湿陷面,结构性黄土的变形与结构强度的破坏有直接的关系。  相似文献   

14.
通过湿陷性黄土变含水量情况下的室内压缩试验和分别采用单线法和双线法做的浸水湿陷试验,结合试验曲线分析了湿陷性黄土随含水量变化的特征,总结出黄土的压缩变形与湿陷变形随饱和度以及压力变化的规律,借以描述湿陷性黄土在增减湿过程的湿陷与压缩变形性状以及不同应力路径对黄土变形特性的影响。  相似文献   

15.
黄土地层浸水湿陷对地铁隧道影响试验研究   总被引:2,自引:0,他引:2  
黄土地层浸水湿陷对地铁隧道结构的影响是较为突出的岩土工程问题之一,为深入研究黄土层湿陷变形对隧道衬砌结构的影响机制,通过改进长安大学离心机浸水装置和监测设备,系统开展了浸水条件下湿陷性黄土层对地铁隧道结构影响的离心模型试验,试验结果表明:地铁隧道周边黄土浸水湿陷会导致土层重度增加,隧道拱顶土层内部拱效应因湿陷而消散,土层自重压力增加且完全由隧道结构承担,从而会导致隧道结构受力和变形不利,传统的深埋隧道结构设计理论需考虑湿陷条件下拱顶土压力的不利增长因素;地铁隧道基底下黄土地基的浸水湿陷会明显诱发隧道结构的附加作用应力,但一定厚度的非湿陷性黄土或有效处理过湿陷性黄土层抵御下伏土体湿陷变形的能力不容忽略,非湿陷土层厚度越大,对于抵御湿陷变形的能力越强;隧道基底土层不均匀浸水湿陷会导致隧道拱顶部呈现受拉状态,底部呈现受压状态,隧道拱顶所承受的附加应力更大,约为拱底附加压应力的3倍,隧道基底的自重湿陷变形对隧道顶部衬砌结构所造成的破坏更严重。  相似文献   

16.
为分析冻融作用对黄土湿陷性的影响,采用室内试验方法。首先,以Q3黄土为研究对象,采用增(减)湿法配制不同含水量黄土试样,测试黄土在无水补给条件下受温度影响的冻融变形、压缩变形、湿陷变形;对原状黄土进行颗粒分析及基本物理力学参数试验。试验结果表明:黄土是否产生冻胀取决于其含水量是否超过“临界冻胀含水量”。冻融黄土与原状黄土相比压缩变形量较大,把部分浸水湿陷变形转化为压缩变形,冻融作用使黄土的湿陷性弱化。冷冻黄土在相同温度下,含水量越大,湿陷系数越小;在同一含水量下,冻结温度愈低湿陷系数愈小。  相似文献   

17.
大厚度黄土自重湿陷性场地浸水湿陷变形特征研究   总被引:1,自引:0,他引:1  
在晋中地区大厚度自重湿陷性黄土场地进行了打设注水孔的浸水试验,提出了一种浸水试坑外部土层水平位移的监测方法,对地表及地下湿陷变形、水分扩散规律、浸水湿陷范围、试坑周围裂缝发展及试坑外围地下水平位移进行了监测和研究,对地区修正系数的计算方法进行了探讨。结果表明:该场地黄土湿陷经历初始浸水、湿陷起始、剧烈湿陷、稳定湿陷、剧烈固结、稳定固结6个阶段;探讨了浸水过程中水分扩散规律及其对湿陷变形的影响,提出了“湿陷沉降迟滞-突变”效应并用“层壳”作用对其进行了解释;对比其它试验资料发现地面湿陷影响范围与自重湿陷性土层厚度的比值具有一定规律,均在1.6左右;建立了一个以面积为权重的反算方法并算得该地区为0.7;试坑周围的裂缝发展经历侧向拉开、纵向发展、新裂缝产生、受压变窄4个阶段;该场地实测自重湿陷下限深度为18 m;试坑外围浅部土层向试坑中心方向位移,深部土层则向外部位移,拐点的深度随与试坑距离的增大而减小。研究成果已经应用于该场区后期地基设计,并可指导该地区未来工程建设。  相似文献   

18.
湿陷变形是黄土地区重要的岩土工程问题,处于湿陷地基中的基础会因此受到下拉荷载作用,给上部建筑造成隐患。本文以实际工程为背景,对黄土地区岩土工程勘测的相关问题进行阐述,指出影响黄土湿陷的主要因素是含水量和干密度,并对目前工程中湿陷量计算存在的问题进行探讨。同时提出桩基负摩阻力存在一个最大值,约出现在中性点深度的一半位置处,并以此建立了一种负摩阻力简化计算方法,为工程设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号