首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
广州地铁隧道冻结工程冻土力学特性试验研究   总被引:3,自引:0,他引:3  
人工冻结工程中,天然岩土变为冻岩土,其物理力学性质会发生显著变化,而隧道冻结工程的冻土力学参数,是冻结壁设计和隧道开挖的依据.据此展开室内试验,研究结果表明,在相同的土质条件下,温度越低,冻土的单轴抗压强度越高;当蠕变应力小于冻土长期强度时,可用方程ε=AσBtC描述冻土的蠕变过程;而当蠕变应力较大时,上述蠕变方程不适用;在加载应力作用初期,冻土的强度衰减很快,在设计中必须考虑冻土的长期强度,而不能用瞬时强度代替长期强度;在有补给水源的情况下,粉质粘土的冻胀率及融沉系数最大,分别可达26.88%和17.19%.  相似文献   

2.
天然岩土通过人工冻结,其各项力学性能都会发生变化,为了更好地研究滨海软土地层人工冻土的蠕变性能,本文对福州地铁2号线各车站典型地层做了系统针对性试验研究。针对原状土样,在尽量减小扰动情况下,进行室内冻结试验,根据试验可得:相同温度下含水量较小的冻结土单轴抗压强度更大;当仅考虑非稳定蠕变阶段和稳定蠕变阶段时,蠕变可以用方程ε=Aσ~Bt~C描述。  相似文献   

3.
软土卸荷时效性及其孔隙水压力变化试验研究   总被引:2,自引:1,他引:1  
 采用英国GDS公司生产的STDTTS+UNSAT(7 kN/1 700 kPa)型号三轴测试系统,对上海淤泥质软土进行一系列室内试验研究,系统地探讨基坑不同区域的卸荷时效性特性及其孔压变化规律。试验结果表明,软土卸荷后蠕变可出现3个阶段:衰减蠕变、等速蠕变、加速蠕变。当应力水平较低时,蠕变曲线只出现蠕变的第1阶段;当卸荷应力水平增大到一定值时,蠕变曲线出现第1,2阶段;当应力水平较高时,变形急剧增加,土样很快就出现破坏。但不会出现从蠕变的第2阶段(等速蠕变阶段)直接过渡到蠕变第3阶段(加速蠕变阶段)的情况。孔压系数随时间而变化,并不是常数。卸荷时基坑不同区域孔压均减小,然后在不排水蠕变阶段逐渐增加到最大值,此时基坑安全系数达到最小。  相似文献   

4.
为探究高温对页岩陶粒轻骨料混凝土(SCLAC)蠕变特性的影响,进行了室温至800℃后SCLAC单轴压缩试验、分级压缩蠕变试验和扫描电镜(SEM)试验,分析了SCLAC质量损失、抗压强度损失、蠕变特性及微观结构特征.结果 表明:随温度升高,SCLAC的内部微观结构变得疏松,质量、抗压强度逐渐降低,800℃后质量损失率为9.54%,抗压强度损失率为63.88%;随温度升高和应力水平增加,蠕变应变和蠕变速率增大,蠕变历时和蠕变破坏临界应力水平减小;温度高于600℃时蠕变应变明显增大,在相同应力水平下,与室温相比600℃后的蠕变应变增加了82.76%.基于试验结果对Burgers蠕变模型参数进行辨识,所得理论曲线与减速蠕变阶段和等速蠕变阶段的试验数据吻合较好.  相似文献   

5.
为研究裂隙硬岩与完整岩石蠕变特性间的相关关系,结合不同特征应力区间下硬岩蠕变特性有较大区别的特点,以不同角度的单裂隙砂岩为对象开展蠕变试验。结果显示:当所受应力σ1<起裂应力σci时,试样均仅表现出衰减蠕变特性,此时各试样蠕变变形的不同主要是由于裂隙角度引起的初始损伤不同而导致的;当σ1ci时,试样均进入了加速蠕变阶段并最终发生破坏。此时,各试样蠕变特性的不同不仅包含初始损伤影响,还受到时效损伤的影响。基于此,建立裂隙岩体全阶段损伤蠕变模型:当σ1ci时,开关闭合,模型仅受初始损伤影响;当σ1ci时,开关断开,时效损伤体进入工作。模型中初始损伤可从应变能角度进行计算,时效损伤则可采用Kachanov蠕变损伤公式计算。该模型对完整岩石和裂隙岩体均适用,仅在参数上有所区别。因此,先根据完整岩石特征应力推导裂隙岩体的特征应力,再计算特征应力区间下的损伤变量便可实现完整岩石推导裂隙岩体...  相似文献   

6.
高温–高含冰量冻土蠕变试验研究   总被引:11,自引:0,他引:11       下载免费PDF全文
为了研究高温–高含冰量冻土的蠕变特性,开展了温度分别为-0.3℃,-0.5℃,-1.0℃,含水率分别为40%,80%,120%的冻结黏土单轴压缩蠕变试验。试验结果表明,无论应力多大、作用时间多长,高温–高含冰量冻结黏土单轴压缩蠕变过程都具有衰减特征;在相同的温度条件下,在相同时刻、含水率40%时冻土强度最大,含水率120%时次之,含水率80%时最小;还得到高温–高含冰量冻结黏土单轴压缩蠕变方程、应力–应变关系和长期强度方程的参数。  相似文献   

7.
冻结法施工是地铁开挖的常用手段,因此典型土层的冻土蠕变特性可为工程提供安全资料。针对南通地区地铁开挖过程中典型土层人工冻结黏土在不同温度水平下进行单轴抗压和蠕变试验,获得在-5℃,-10℃,-15℃温度下冻土应力应变和蠕变的特性规律。在此基础上,引入模糊数优化传统的蠕变模型,利用大量实验数据回归改进后的模型,优化后的蠕变模型能更好的拟合试验值,更能反映实际地下工程的不确定性。  相似文献   

8.
人工冻土单轴抗压强度与温度和含水率的关系   总被引:1,自引:0,他引:1  
冻土在拉应力作用下,由于其气泡(空隙、缺陷)等导致的应力集中作用,使裂纹迅速扩展,并引起脆断,所以抗拉强度远比抗压强度低.由于冻土的力学性质与岩石的力学性质相差甚远,冻土的抗压强度通常以到试样被压坏为止算冻土的抗压强度.我们在基本物理性质的基础上,对温度为-1℃、-5℃、-10℃、-15℃、-20℃、-24℃以及含水率为14%、17%、19%、20%、22%、23.15%、25%的单轴抗压强度进行测试.在含水率一定的情况下,在-7℃、-20℃的时候,是冻土单轴抗压强度的两个变化点,到了-20℃随温度继续降低,单轴抗压强度逐渐减小.而当温度一定的时候,单轴抗压强度随着含水率的增加反而降低,变化趋势接近线性.  相似文献   

9.
冻土的蠕变特性与所受应力水平及蠕变应变有关,在高应力水平下会表现出加速蠕变特性。本文在分数阶的非线性黏壶基础上提出了可以描述加速蠕变特性的应力-应变双控元件。传统Nishihara模型难以描述加速蠕变,通过将Nishihara模型中的黏弹性体替换为分数阶的Abel黏壶,将黏塑性体替换为提出的应力-应变双控元件,得到了冻土的一维蠕变本构模型,并将其推广到三维应力状态。提出的模型对冻土的单轴和三轴蠕变试验数据进行了预测分析,和传统Nishihara模型相比,该模型只增加了一个参数,不仅能够反映冻土在低应力水平下冻土衰减蠕变和稳定蠕变特性,而且还可以较好地反映冻土在高应力水平下加速蠕变规律。说明了该模型对于描述冻土在不同应力条件下不同蠕变状态的适用性。  相似文献   

10.
为了研究炭质板岩在高围压条件下的流变力学特性,进行了不同围压条件下的炭质板岩加卸载流变试验,试验结果表明,炭质板岩存在明显的流变下限,约为抗压强度应力水平的50%~60%,低于流变下限时仅有瞬时弹性应变和不可恢复的压密应变,其中压密应变在应力水平较低时已经趋于稳定值,应力水平为抗压强度的60%~70%时仅出现衰减蠕变或等速蠕变,应力水平超过抗压强度80%时才发生加速蠕变。根据传统强度理论,建立了包含压密应变、硬化塑性应变和损伤塑性应变的蠕变模型,对各阶段模型参数进行辨识,依据稳定蠕变阶段参数辨识结果拟定加速蠕变阶段部分参数的合理初始值,达到了较好的拟合度,表明模型对于反映高围压炭质板岩流变特性具有较好的适用性。  相似文献   

11.
采用K0DCGF(K0固结—保持荷载冻结—形成温度梯度—再试验)方法,开展不同温度梯度冻结饱和黏土三轴蠕变试验,研究冻土蠕变变形规律和温度梯度诱导的冻土非均质特征。结果表明:K0DCGF模式中温度梯度冻结饱和黏土蠕变曲线由瞬时蠕变、衰减蠕变、稳定蠕变和加速蠕变4个阶段组成;温度梯度冻土径向蠕变速率小于轴向蠕变速率;温度梯度冻土最小轴向蠕变速率与蠕变应力之间满足指数函数关系,而长期强度极限与蠕变破坏时间之间则满足对数函数关系;梯度温度冻结过程中的水分场重分布和试验后冻土变形的非均匀分布是K0DCGF蠕变试验中“温度梯度诱导的冻土非均质性”的重要体现;蠕变试验后温度梯度冻土冷端含水量最高,密实度最大;蠕变试验后温度梯度冻土宏观径向变形/试样高度沿试样高度方向分布随蠕变应力增加由先增加后降低规律逐步演化为持续增加规律,这一现象与冻土初始瞬时蠕变速率密切相关。  相似文献   

12.
火灾发生时,钢材的高温蠕变效应可能会引起结构失效。对高强结构钢Q550,Q690和Q890进行了一系列高温蠕变试验,试验的温度点包括400、550、700℃和800℃,每个温度点下设3个应力水平,分别为0.4 f1,T、0.6 f1,T和0.8 f1,T(f1,T为高温屈服强度),得到了钢材在不同温度和应力条件下的蠕变曲线与蠕变速率曲线,并根据蠕变速率曲线的特征对蠕变的特征阶段进行划分。试验中观察到当温度与应力水平较低时,蠕变发展极为缓慢;而当温度与应力水平较高时,蠕变发展迅速,总蠕变应变很大;在高温、高应力条件下,蠕变速率曲线呈现三阶段特征,即先下降,随后基本保持恒定,然后迅速升高的三阶段;而在较低温度下,蠕变速率曲线仅呈现前两个阶段,可见温度及应力水平对钢材蠕变的发展具有显著影响。  相似文献   

13.
地下交通、煤炭开采等工程常遇砂土交错和地下水极为丰富的软弱地层施工难题,可利用液氮使土体处在超低温冻结状态以达到土层稳定和加固的目的,因此,探究超低温冻土的抗压强度对于工程施工的长期稳定和安全具有重要意义。为揭示超低温冻结黏土单轴抗压力学性质变化规律,对含水率为17%,20%,23%的土样进行–10℃~–180℃的单轴压缩试验。结果表明:冻土温度高于–80℃时,呈弹塑性破坏,低于–80℃时,呈脆性破坏;冻土抗压强度随温度降低,先呈线性增加,当温度低于–80℃后强度基本稳定,并对温度与冻土抗压强度进行拟合,拟合效果较好;含水率在17%~23%,冻土抗压强度随含水率增加而增大,冻土弹性模量随温度降低呈上升趋势,且含水率越高弹性模量越大。最后,对比分析了4种应力–应变方程对超低温冻土关系的适用性,发现幂函数和双曲线公式拟合超低温冻土应力–应变关系精度较低,拟合效果并不理想;复合幂指数模型对弹塑性破坏过程拟合精度较好,并能准确地描述该过程的屈服和破坏情况,但对于脆性破坏段的应力–应变曲线并不适应,因此该模型有一定的局限性;黏弹塑性方程对冻土应力–应变关系拟合精度最好,后引入温度函数,改进黏弹塑性方程,提出与冻土温度有关的复合型方程,该方程拟合精度更高,补充了超低温冻土应力应变方程理论,可以为实际工程提供理论参考。  相似文献   

14.
通过一系列不同振动频率下的蠕变试验,分析冻结兰州细砂的蠕变变形特性以及频率对蠕变变形和蠕变破坏的影响。发现较高的频率对冻土的蠕变变形、应变速率影响较大;当动荷载应力幅值较大时,荷载大小的影响大于频率的影响,当应力幅值较小时,必须考虑频率的影响;当振动频率增加时,冻土更容易发生破坏,破坏时间变短;在此次试验条件下,土体的破坏应变较小,为2.8%~5.1%,破坏应变时大时小,总体上呈现变小的趋势;当最大加载应力不变而频率增加时,最小蠕变速率的变化幅值不大,都在一个量级范围内,当最大加载应力为4.5MPa时,最小蠕变速率为2.2×10-5~4.2×10-5s-1,而当最大加载应力为3.0MPa时,最小蠕变速率为2.9×10-6~6.8×10-6s-1;频率变化时,破坏振动次数并非单一地变化,存在临界频率,此时破坏振动次数最大。  相似文献   

15.
砂岩蠕变特性及蠕变力学模型研究   总被引:14,自引:1,他引:14       下载免费PDF全文
应力水平对岩石蠕变特性有很大的影响。通过对砂岩单轴蠕变试验研究表明:当加载应力远小于屈服应力时,应变速率持续衰减最终保持恒定,只产生蠕变的第1,2阶段,试件不会破坏,属于稳定型蠕变;当加载应力大于或小于但接近于屈服应力时,应变速率先衰减后加速增长,蠕变的3个阶段都产生了,在蠕变第3阶段产生了轴向方向的3条裂纹,最终裂纹扩展贯通而破坏,破坏形式为张性拉裂破坏,属于非稳定型蠕变。实验说明,屈服应力是岩石产生极非稳定型蠕变的一个临界值。根据加载应力水平产生的蠕变差异,建立了砂岩的经验本构模型和蠕变力学模型,为岩体工程建设提供借鉴与参考。  相似文献   

16.
为了研究盐岩的蠕变特性,对盐岩试件开展不同轴向应力下的单轴压缩蠕变试验。试验结果显示,盐岩稳态蠕变率和相同时刻的蠕变应变均随轴向应力增大而非线性增大,两者随轴向应力的变化规律均可用指数函数描述;盐岩蠕变过程具有非线性特征,且轴向应力越大、蠕变时间越长,非线性特征越明显。为了确定盐岩长期强度,提出一种改进的稳态蠕变率拐点法,该法确定的盐岩长期强度值与等时应力–应变曲线拐点法确定的结果非常接近,可为类似研究提供一定的借鉴。从唯象学的角度出发,通过对S形函数求反函数的方法,提出一种新的岩石单轴压缩全过程蠕变模型,并利用盐岩蠕变试验结果对模型合理性进行验证。结果表明,该模型不仅能够描述盐岩在低应力水平下的衰减蠕变和稳态蠕变,还能反映高应力水平下盐岩单轴压缩蠕变破坏全过程,特别是能够反映加速蠕变。模型以一个统一的表达式即可描述盐岩单轴压缩蠕变全过程的3个阶段,克服了元件组合模型需要分段处理的缺点;同时,该模型表达式非常简单,方便应用。  相似文献   

17.
基于分数阶微积分的岩石非线性蠕变损伤力学模型   总被引:2,自引:0,他引:2  
借鉴元件组合模型的建模方法,将含分数阶导数的软体元件与虎克体串联,引入能反映应力水平和时间影响的损伤变量,提出一种四元件非线性蠕变损伤模型,并给出该模型的本构方程和蠕变方程.在应力水平较低时,模型能够有效地描述岩石的衰减蠕变和稳定蠕变;当应力水平超过岩石的长期强度时,能够反映加速蠕变特性.利用蠕变试验数据对所提出的模型进行辨识,结果表明该模型不但能够很好地描述蠕变曲线中衰减蠕变阶段、稳态蠕变阶段和加速蠕变阶段,而且可以在保证拟合精度的条件下减少模型中的参数,为非线性蠕变模型研究提供了一种新的思路.  相似文献   

18.
对玄武岩在循环单轴应力–温度作用下的力学性质进行初步的试验研究。开展应力上限为80%和65%单轴抗压强度、温度上限为60℃和90℃的循环单轴应力–温度试验以及循环后的单轴压缩试验。试验结果表明:循环应力和循环温度作用具有"叠加"效应;循环应力上限为80%单轴抗压强度时,玄武岩随循环次数增加逐渐损伤,在循环中破坏;应力上限65%抗压强度且温度上限60℃时,玄武岩随循环次数增加逐渐硬化,在循环中不会发生破坏;损伤岩样峰值应变经历初始阶段、等速阶段和加速阶段,残余应变具有较大波动性;损伤岩样峰值割线模量先迅速降低,后缓慢降低,在临近破坏时急剧减小,应力上限大时峰值割线模量的降低程度大;应力上限相同,温度上限大的损伤岩样破坏循环数小;硬化岩样峰值应变和残余应变随循环次数增加而减小,峰值割线模量、割线弹性模量和卸载模量随循环次数增加而增大,温度上限大时岩样模量增加幅度小;硬化岩样受循环作用后,抗压强度较初始强度提高;岩石破坏时峰值应力与峰值割线模量定义的损伤因子线性相关程度高。  相似文献   

19.
在寒区工程建设中了解冻混杂岩土材料,如冻土石混合体的力学性质是保证工程建设安全的前提条件。采用单轴压缩和巴西劈裂试验探讨纯冰、冰石混合物、冻土和冻土石混合体在不同冻结温度(-10℃,-20℃,-30℃)下的变形以及强度性质,同时借助显微成像技术观察试样内部的冰石、土石、冰土界面形态和受力开裂特征。试验得到以下结论:(1)在单轴压应力或劈裂拉应力作用下纯冰和冻土的破裂面相对平直;而冰石混合物和冻土石混合体的破裂面相对弯曲。(2)受块石形状的影响(外凸和内凹、锯齿边界),冰石混合物中可见对应的沿准确的冰石界面开裂和在界面附近冰体一侧开裂的2种裂缝类型;冻土石混合体中裂缝主要在冻土中和土石界面间发育。(3)试样的抗压和抗拉强度随冻结温度的降低呈现线性增加的趋势。随温度的降低冻土和冻土石混合体的压、拉强度增长速率要大于纯冰和冰石混合物的强度增长速率;各试样的压、拉强度比约为5。(4)在冻结温度为-10℃时,各试样的抗压、抗拉强度大小依次为冰石混合物冻土石混合体冻土纯冰;然而在冻结温度为-30℃时,抗压强度大小依次为冻土冻土石混合体冰石混合物纯冰,抗拉强度大小依次为:冻土石混合体冻土冰石混合物纯冰。(5)冻土石混合体内部土石界面间除胶结冰的冻黏作用之外,还存在胶结冰的嵌入和互锁强化作用。在高含水量的冻土内部,土颗粒易溶于水中,在冰土界面土层一侧形成冰土混合交融层,该层强度大于纯冰强度,有效提高了冻土的强度。  相似文献   

20.
李猛 《四川建材》2013,(5):113-114,117
基于实测的实验数据分析蠕变曲线的特征,构造出能够表现岩石衰减蠕变和加速蠕变阶段特征的非线性函数,并引入到burgers蠕变本构方程中,得到一个新的非线性蠕变模型,岩石稳定蠕变阶段的非线性渐变过程和加速蠕变阶段蠕变速率的快慢程度可通过调整蠕变参数进行有效地模拟。在较低应力水平时,模型能够有效地刻画岩石的初始蠕变和稳定蠕变;当应力水平超过岩石的长期强度时,能够反映加速蠕变特性。利用该模型对试验数据拟合的结果表明,对蠕变模型计算结果和试验结果的比较,表明该模型能够很好的描述蠕变曲线中的初始衰减蠕变阶段稳态蠕变阶段和加速蠕变阶段,证明了该模型的正确性和合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号