首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
激发剂对钢渣胶凝材料性能的影响   总被引:1,自引:0,他引:1  
以钢渣、矿渣、水泥熟料为主要原料,并掺入少量激发剂,成功制备了高强、高钢渣掺量的钢渣胶凝材料.探讨了激发剂、熟料掺量、钢渣掺量对钢渣胶凝材料性能的影响,并通过SEM,XRD分析了激发剂对钢渣胶凝材料浆体水化产物及水泥石微观结构的作用.结果表明:激发剂显著提高了钢渣的活性,从而大幅度提高了钢渣胶凝材料的早期性能;掺加激发剂后,钢渣胶凝材料3 d抗压强度可增加119.7%;激发荆对钢渣胶凝材料浆体水化产物种类的影响不大;与硅酸盐水泥浆体相比,钢渣胶凝材料浆体中C-S-H凝胶和Aft晶体含量明显增多,Ca(OH)2晶体含量显著降低.  相似文献   

2.
安庆锋  陈平  李红 《广东建材》2007,(11):120-121
本文对锰铁合金渣和矿渣微粉混掺用于绿色生态水泥进行了研究:通过XRD和SEM分析水化产物表明,随着锰铁合金渣的掺入量的提高,水泥水化延迟,该锰铁合金渣微粉在AFJS激发剂的激发下显示出较好的水化活性,在适当的掺量的情况下,可以提高胶砂强度.实验证明:锰铁合金渣具有潜在水硬性和火山灰性,可以用作水泥混合材.  相似文献   

3.
实现高固废利用率及探明磷石膏激发的效果,主要研究了不同掺量磷石膏对磷渣-矿渣-水泥复合胶凝材料体系抗压强度的影响规律,并采用XRD、TG和SEM分析了体系的水化产物。结果表明:适量的磷石膏对磷渣-矿渣-水泥复合胶凝材料体系3 d的水化具有促进作用,当磷石膏掺量达到5%时,其含有的磷、氟等杂质会延缓胶凝材料的水化进程,导致3 d强度降低;磷石膏的掺入对体系7、28、90 d的强度都有一定激发效果,并且随着磷石膏的掺量增加,其主要水化产物C-S-H和钙矾石生成量逐渐增多,当磷石膏的掺量为5%时,水化至28 d后,体系中仍含有石膏,但当磷石膏掺量超过8%时,硬化浆体中残余大量石膏,反而会降低体系的机械强度。  相似文献   

4.
利用基于水玻璃形成的复合碱组分SN和少量硅酸盐水泥共同激发锰渣-矿渣体系,制备出碱激发胶凝材料,并对该胶凝材料的力学性能及水化过程进行了探讨。结果表明:水化3~7d内是该碱激发胶凝材料中锰渣与矿渣的适应性由劣向好转变的关键。水化初期(3d前),随着矿渣替代锰渣量增加,碱激发胶凝材料中生成水化产物的程度变慢,抗压强度降低;水化7d后,碱激发锰渣-矿渣胶凝材料中随着矿渣替代量的增加,石英(SiO2)被剥蚀解体量增多,体系的溶解-聚合程度逐渐提高,水化产物逐渐增多,化学结合水量逐渐增大,抗压强度逐渐提高。  相似文献   

5.
李国刚  陈友治  许闽  宋正林 《砖瓦》2009,(12):17-19
以磨细矿渣、原状脱硫渣和炉渣为基本组成,掺入水泥熟料和石灰激发剂配成复合胶凝材料,粒状工业废渣为细集料制备新型墙体材料。通过配合比设计、强度测试,探讨了激发剂含量和不同工业废渣细集料对新型墙材强度的影响,确定了复合胶凝材料及墙体砌块的配比;并通过XRD、SEM等测试手段,分析了复合胶凝材料的主要水化产物及微观结构。  相似文献   

6.
基于正交试验,以钢渣、脱硫石膏为主要原料,并掺入适量矿渣和复掺少量激发剂,探讨了矿渣掺量、激发剂复掺比例和脱硫石膏掺量对无熟料胶凝材料强度、安定性、标准稠度需水量和凝结时间的影响,得到了各矿物组成的最佳配合比设计,并在最佳配合比组成范围内研究了矿物混合料的二次粉磨对胶凝材料的活性的影响。  相似文献   

7.
复合外加剂对少熟料矿渣胶凝材料性能的影响   总被引:2,自引:0,他引:2  
通过对硅酸盐水泥熟料矿物组成、水化特性,矿渣的化学组成和水化过程的分析,研究了普通矿渣水泥水化产物平衡体系的稳定性,并根据少熟料矿渣胶凝材料系统水化产物稳定存在的条件,研制了适用于高掺量矿渣水泥的复合外加剂,得到了性能较好的胶凝材料。  相似文献   

8.
通过对比水泥、矿渣、粉煤灰等掺和料和化学激发剂氯化钙、硫酸钠对生土砌块用粘结材料物理力学性能的影响,探讨研究粘结材料改性方法。结果表明:胶凝材料总掺量小于15%时,复掺水泥和矿渣对粘结材料强度改善效果最好,水泥单掺改性效果次之,不宜掺入粉煤灰。矿渣掺量小于7.5%时,硫酸钠对水泥矿渣改性粘结材料活性的激发效果明显优于氯化钙。受到矿渣水化产物和生土材料干燥收缩的影响,当粘结材料含水率小于20%时,强度损失明显。  相似文献   

9.
选用电解锰渣激发钢渣,研究电解锰渣的掺量对钢渣活性的影响及钢渣活性激发机理。借助XRD和SEM对钢渣胶凝材料水化产物进行矿物相分析和微观形貌分析;比较不同龄期的钢渣活性指数。研究结果表明当钢渣与电解锰渣复合取代50%水泥时,电解锰渣掺量为14%激发效果最佳,该比例下钢渣胶凝材料7 d的活性指数从54%提高到84%,28 d的活性指数从70%提高到92%,可达到425~#强度等级要求。电解锰渣掺入能够加速钢渣水化产物中C-S-H凝胶、AFt晶体的形成,反应生成的水化产物吸收了、熟料水化过程中释放的Ca(OH)_2,增大了钢渣水化浆体的密实度,从而提高了钢渣的活性。  相似文献   

10.
研究了镍渣矿渣比和水泥掺量对镍渣矿渣复合胶凝材料体系的影响,并在此基础上,辅以化学激发剂NS、CA,采用正交试验方法,研制开发新型镍渣矿渣基复合胶凝材料,最佳配比为:镍渣和矿渣的质量比5∶5,水泥、激发剂NS和CA分别占镍渣和矿渣总质量的20%、0.5%和2%,胶砂比1∶3,水胶比0.5,可制得符合MU25等级的免烧砖.  相似文献   

11.
为实现镍铁渣(FS)的综合利用,降低磷酸镁水泥的生产成本,提出利用高镁含量的FS与磷酸二氢铵(ADP)反应制备镍铁渣基磷酸镁水泥(F-MPC).在50℃恒温水浴中反应8h的条件下,探讨FS与ADP质量比(mFS/mADP)、氧化镁掺量(wM)、水胶比(mW/mB)、硼酸掺量(wBA)对材料凝结时间和抗压强度的影响,采用X射线衍射(XRD)和扫描电镜-能量弥散X射线谱(SEM-EDS)分析F-MPC水化产物的物相组成及微观形貌,探讨其水化反应机理.结果表明:当mFS/mADP=4、wM=4%、mW/mB=0.17、wBA=0.3%时,F-MPC的工作性能与力学性能最佳;水化产物以鸟粪石为主,同时还有磷镁铵石,F-MPC以这些水化产物为胶结料,通过胶结作用将FS颗粒进行包裹,最终形成高强的硬化体.  相似文献   

12.
针对矿渣、粉煤灰的成分及特点,研制了一种无熟料矿渣粉煤灰胶凝材料,并对其强度影响因素、水化性能进行了研究。结果表明,加入70%矿渣,15%粉煤灰,10%石膏,5%复合激发剂,可以制备性能较好的胶凝材料,28d抗压强度可达到58.21MPa。  相似文献   

13.
主要研究了酸性激发剂激发掺入钢渣和矿渣的复合渣水泥,仔细分析了酸激发对复合渣水泥性能影响的机理.试验表明:在0.05mol/L的硫酸和醋酸激发下,复合渣水泥各项性能指标得到较大的提高.从SEM照片看出,钢渣在酸性激发剂作用下,与熟料水化产物发生二次水化,相互联结在一起,形成大量的网状结构的絮状凝胶.  相似文献   

14.
冶金渣制备生态型人工鱼礁混凝土的试验研究   总被引:2,自引:0,他引:2  
通过正交试验研究了矿渣钢渣熟料石膏体系胶凝材料的强度。胶凝材料正交试验表明:矿渣:钢渣的复合比为7∶1,矿渣和钢渣的比表面积分别为480 m 2·kg -1和550 m 2·kg -1,并与10%的水泥熟料和10%的脱硫石膏复合的胶凝材料具有较高的强度。以优化后的胶凝材料代替水泥,并以热闷法稳定化的钢渣颗粒为骨料,可以制备出抗压强度达到65 MPa以上的人工鱼礁混凝土。利用XRD和SEM方法分析胶凝材料的水化过程,结果表明,水化反应主要生成AFt相和C-S-H凝胶,钢渣、水泥熟料和脱硫石膏的协同作用对矿渣的火山灰活性反应具有重要促进作用。  相似文献   

15.
结合扫描电镜(SEM),X射线衍射(XRD),差热-热重分析(DSC-TG)以及微量热仪等微观测试手段,研究了磷渣粉水泥基复合胶凝体系的水化特性.结果表明:磷渣粉的掺入只会影响水泥基材料的水化产物类型和数量,但不会改变水化产物的种类,水化产物中没有观察到羟基磷灰石的存在.磷渣粉的掺入不会影响C3A的水化,但会延缓水泥熟料中C3S和C2S的水化,磷渣粉主要通过延缓水化诱导期来实现水泥胶凝体系的缓凝.掺磷渣粉复合胶凝体系诱导期后各阶段的水化反应阻力减小、水化反应速率增加,但整个复合胶凝体系的总体水化程度降低,降低幅度随着龄期增长不断减小.  相似文献   

16.
矿渣粉煤灰复合胶凝体系的试验研究   总被引:4,自引:2,他引:2  
本文通过优化组分设计和添加剂的使用,制备了一种高掺量矿渣粉煤灰复合胶凝体系.并研究了物料粉磨方式、石膏品种及掺量、混合材的掺量及比例对复合胶凝体系强度的影响。结果表明,复合胶凝体系强度可达复合水泥42.5R标准,水化热较低并具有良好的抗硫酸盐侵蚀和干缩性能,由其配制的混凝土具有良好的抗渗性能。  相似文献   

17.
少熟料矿渣水泥的理论与实践   总被引:1,自引:0,他引:1  
分析矿渣和硅酸盐水泥熟料矿物的化学组成、水化过程和水化产物,估算出矿渣水泥中矿渣的最大掺量,并通过实验进行验证。  相似文献   

18.
少熟料矿渣水泥的理论与实践   总被引:1,自引:0,他引:1  
分析矿渣和硅酸盐水泥熟料矿物的化学组成、水化过程和水化产物,估算出矿渣水泥中矿渣的最大掺量,并通过实验进行验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号