首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Y. Cheng  Z. Lin 《Indoor air》2016,26(2):274-285
Room occupants' comfort and health are affected by the airflow. Nevertheless, they themselves also play an important role in indoor air distribution. This study investigated the interaction between the human body and room airflow under stratum ventilation. Simplified thermal manikin was employed to effectively resemble the human body as a flow obstacle and/or free convective heat source. Unheated and heated manikins were designed to fully evaluate the impact of the manikin at various airflow rates. Additionally, subjective human tests were conducted to evaluate thermal comfort for the occupants in two rows. The findings show that the manikin formed a local blockage effect, but the supply airflow could flow over it. With the body heat from the manikin, the air jet penetrated farther compared with that for the unheated manikin. The temperature downstream of the manikin was also higher because of the convective effect. Elevating the supply airflow rate from 7 to 15 air changes per hour varied the downstream airflow pattern dramatically, from an uprising flow induced by body heat to a jet‐dominated flow. Subjective assessments indicated that stratum ventilation provided thermal comfort for the occupants in both rows. Therefore, stratum ventilation could be applied in rooms with occupants in multiple rows.  相似文献   

2.
This study aimed at investigating the thermal comfort for the whole body as well as for certain local areas, skin temperatures, and sensible heat losses in various asymmetric radiant fields. Human subject experiments were conducted to assess the overall comfort sensation and local discomfort, and local skin temperatures were measured. Through thermal manikin experiments, we discovered a new method for the precise measurement of the local sensible heat loss in nonuniform thermal environments. The local sensible heat losses were measured by the use of a thermal manikin that had the same local skin temperatures as the human subjects. The experimental conditions consisted of the anterior–posterior, right–left, and up–down asymmetric thermal environments created by radiation panels. A total of 35 thermal environmental conditions were created ranging from 25.5 to 30.5 °C for air temperature, from 11.5 to 44.5 °C for surface temperature of radiation panels, from 40% RH to 50% RH for humidity, and less than 0.05 m/s for inlet air velocity to the climatic chamber. The local skin temperature changed depending on the environmental thermal nonuniformity, even if the mean skin temperature remained almost the same. It is essential to use the skin temperature distribution as well as mean skin temperature for expressing thermal comfort in nonuniform environments. The local sensible heat loss changed depending on the environmental thermal nonuniformity, even if the mean sensible heat loss remained almost the same. The relationship between the local skin temperature and local sensible heat loss cannot be depicted by a simple line; instead, it varies depending on the environmental thermal nonuniformity. The local heat discomfort in the head area was dependent on both the local skin temperature and local sensible heat loss. However, the local cold discomfort in the foot area was related only to the local skin temperature.  相似文献   

3.
This paper presents a thermal comfort study using a thermal manikin in a field environment chamber served by the Displacement Ventilation (DV) system. The manikin has a female body with 26 individually heated and controlled body segments. The manikin together with subjects was exposed to 3 levels of vertical air temperature gradients, nominally 1, 3 & 5 K/m, between 0.1 and 1.1 m heights at 3 room air temperatures of 20, 23 and 26 °C at 0.6 m height. Relative humidity at 0.6 m height and air velocity near the manikin and the subjects were maintained at 50% and less than 0.2 m/s, respectively. The aims of this study are to assess thermally non-uniform environment served by DV system using the manikin and correlate the subjective responses with measurements from the manikin. The main findings indicate that room air temperature had greater influence on overall and local thermal sensations and comfort than temperature gradient. Local thermal discomfort decreased with increase of room air temperature at overall thermally neutral state. The local discomfort was affected by overall thermal sensation and was lower at overall thermally neutral state than at overall cold and cool sensations.  相似文献   

4.
A three-dimensional steady-state numerical analysis was performed in a room heated by two-panel radiators. A virtual sitting manikin with real dimensions and physiological shape was added to the model of the room, and it was assumed that the manikin surfaces were subjected to constant temperature. Two different heat transfer coefficients for the outer wall and for the window were considered. Heat interactions between the human body surfaces and the room environment, the air flow, the temperature, the humidity, and the local heat transfer characteristics of the manikin and the room surfaces were computed numerically under different environmental conditions. Comparisons of the results are presented and discussed. The results show that energy consumption can be significantly reduced while increasing the thermal comfort by using better-insulated outer wall materials and windows.  相似文献   

5.
In this work the comfort level, namely the thermal comfort, local thermal discomfort and air quality levels, in a classroom with desks equipped with two personalized ventilation systems, in slightly warm environments, is evaluated. A manikin, a ventilated classroom desk, two indoor climate analyzers, a multi-nodal human thermal comfort numerical model and a computational fluid dynamic numerical model, are used.  相似文献   

6.
With increasing demand for acceptable environment in the modern workplace is it necessary, already in the construction phase, to estimate what effect different environmental factors have on the occupants. Thermal sensation is affected by many factors in the work place environment, especially thermal factors and effects from air movement caused by different ventilation principles. A series of full scale measurements as well as numerical calculations have been carried out in order to investigate whether Computational Fluid Dynamics (CFD) calculations and measurements with a thermal manikin are able to predict the perceived thermal climate. When human thermal sensation is linked together in measurements and calculations, the thermal situation in the work place environment is visualized. The results show relatively good agreement with the measurements made in the real environment. However, numerical and experimental methods need to be further developed. Evaluation methods of this type, will enable engineers to make better predictions and early decisions in the design and construction process. This also opens possibilities to use results from a number of full scale tests providing means to improve the comfort, health and productivity in working life.  相似文献   

7.
C. Voelker  H. Alsaad 《Indoor air》2018,28(3):415-425
This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model.  相似文献   

8.
The present work is focused on the study of indoor thermal comfort control problem in buildings equipped with HVAC (heating, ventilation and air conditioning) systems. The occupants’ thermal comfort sensation is addressed here by the well-known comfort index known as PMV (predicted mean vote) and by a comfort zone defined in a psychrometric chart. In this context, different strategies for the control algorithms are proposed by using an only-one-actuator system that can be associated to a cooling and/or heating system. The first set of strategies is related to the thermal comfort optimization and the second one includes energy consumption minimization, while maintaining the indoor thermal comfort criterion at an adequate level. The methods are based on the model predictive control scheme and simulation results are presented for two case studies. The results validate the proposed methodology in terms of both thermal comfort and energy savings.  相似文献   

9.
A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local thermal comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort (Part III) that result from combinations of local sensation and comfort. The models apply to sedentary activities in a range of environments: uniform and non-uniform, stable and transient. They are based on diverse findings from the literature and from body-part-specific human subject tests in a climate chamber. They were validated against a test of automobile passengers. The series is intended to present the models’ rationale, structure, and coefficients, so that others can test them and develop them further as additional empirical data becomes available.A) The whole-body (overall) sensation model has two forms, depending on whether all of the body's segments have sensations effectively in the same direction (e.g warm or cool), or whether some segments have sensations opposite to those of the rest of the body. For each, individual body parts have different weights for warm versus cool sensations, and strong local sensations dominate the overall sensation. If all sensations are near neutral, the overall sensation is close to the average of all body sensations.B) The overall comfort model also has two forms. Under stable conditions, people evaluate their overall comfort by a complaint-driven process, meaning that when two body parts are strongly uncomfortable, no matter how comfortable the other body parts might be, the overall comfort will be near the discomfort level of the two most uncomfortable parts. When the environmental conditions are transient, or people have control over their environments, overall comfort is better than that of the two most uncomfortable body parts. This can be accounted for by adding the most comfortable vote to the two most uncomfortable ones.  相似文献   

10.
The relationships between overall thermal sensation, acceptability and comfort were studied experimentally under uniform and non-uniform conditions separately. Thirty subjects participated in the experiment and reported their local thermal sensation of each body part, overall thermal sensation, acceptability and comfort simultaneously. Sensation, acceptability and comfort were found to be correlated closely under uniform conditions and acceptable range ran from neutral to 1.5 (midpoint between ‘Slightly Warm’ and ‘Warm’) on thermal sensation scale and contained all comfortable and slightly uncomfortable votes on thermal comfort scale. Under non-uniform conditions overall thermal acceptability and comfort were correlated closely. However, overall thermal sensation was apart from the other two responses and non-uniformity of thermal sensation was found to be the reason for the breakage. Combining the effects of overall thermal sensation and non-uniformity of thermal sensation, a new thermal acceptability model was proposed and the model was testified to be applicable to uniform and non-uniform conditions over a wide range of whole body thermal state from neutral to warm.  相似文献   

11.
行道树种植通常被作为改善城市街谷 近地微气候的重要策略,如何发挥行道树对街 谷热舒适度的提升潜力受到诸多学者的广泛关 注。近年来“行道树种植与街谷热舒适度”相关 研究获得了丰硕成果,通过总结梳理可将其归 纳为行道树树木个体形态对热舒适度的调控、 行道树绿带空间配置与街谷热舒适度整体提升 的关联性、适应不同街谷空间形态的行道树种 植设计策略等三个研究主题。在深入分析既有 研究成果基础上,提出了一套改善热舒适度的 街谷行道树种植设计方案技术框架。最后,分 别从建立响应地域气候特征的街谷行道树种植 设计模式、构建街谷环境热舒适度模拟评估导 则、制定街谷环境热舒适度评价标准等方面开展深入讨论,以期为后续城市街谷绿化提升热环境的研究提供思路和借鉴。  相似文献   

12.
The importance of the intake positioning height above the floor level on the performance of “ductless” personalized ventilation (“ductless” PV) in conjunction with displacement ventilation (DV) was examined with regard to the quality of inhaled air and of the thermal comfort provided. A typical office room with two workstations positioned one behind the other was arranged in a full-scale room. Each workstation consisted of a table with an installed “ductless” PV system, PC, desk lamp and seated breathing thermal manikin. The “ductless” PV system sucked the clean and cool displacement air supplied over the floor at four different heights, i.e. 2, 5, 10 and 20 cm and transported it direct to the breathing level. Moreover, two displacement airflow rates were used with a supply temperature adjusted in order to maintain an exhaust air temperature of 26 °C. Two pollution sources, namely air exhaled by one of the manikins and passive pollution on the table in front of the same manikin were simulated by constant dosing of tracer gases. The results show that the positioning of a “ductless” PV intake height up to 0.2 m above the floor will not significantly influence the quality of inhaled air and thermal comfort.  相似文献   

13.
An evaluation model for individual thermal comfort is presented based on the BP neural network. The train data came from a thermal comfort survey. The evaluation results of the model showed a good match with the subject's real thermal sensation, which indicated that the model can be used to evaluate individual thermal comfort rightly. Taken a room air conditioner as an example, the application of the NNEM in creating a microenvironment for individual was discussed. The result showed that the NNEM can play an important role of connecting individual thermal comfort with the control on the air conditioner.  相似文献   

14.
《Energy and Buildings》2005,37(5):443-449
This paper evaluates the performance of a personalized air-conditioning system, namely an innovative partition-type fan-coil unit (PFCU), against that of a central air-conditioning system, in terms of their thermal comfort provided and cooling energy consumed. For a cooling load given, it is found that the thermal comfort index (PMV) resulted from the personalized system is always lower than that from a central system. Also, the PMV-curve of the personalized system responds to the loads faster. The experimental results indicate that the personalized system, as compared to the central system, can shorten the operation time for the same level of thermal comfort required and save up to 45% of the energy consumed by the central system. As regards thermal comfort, the experiment with a thermal manikin substrates the PFCU design for its considerable reduction of the cold draft.  相似文献   

15.
Highly relevant to an individual's thermal perception, the thermal environment in outdoor public spaces impacts the use of such spaces. Thermal adaptation, which involves physiological, psychological and behavioral factors, also plays an important role in assessment of thermal environments by users. Given that these issues have rarely been addressed for outdoor environments in hot and humid regions, this study examines user thermal comfort in a public square in Taiwan. Physical measurements were taken and a questionnaire survey was used to assess the thermal comfort of subjects. The number of people visiting the square was also counted. Analytical results indicate that the thermal comfort range and neutral temperature of subjects was higher than those of people in a temperate region. Additionally, local subjects preferred a cool temperature and weak sunlight, and adapted to thermal environments by seeking shelter outdoors. Analytical results confirm the existence of thermal adaptation and illustrate the characteristics of, and variances in, thermal adaptation. During the cool season, the number of people visiting the square increased as the thermal index value increased. However, the number of people frequenting the square decreased as the thermal index increased during the hot season. These experimental results were compared with those for temperate regions, indicating that the human energy balance model cannot fully explain the influence of climate on use of public spaces; that is, psychological and behavioral factors also play important roles in outdoor thermal comfort. Study findings also elucidate design of outdoor public spaces in hot and humid regions.  相似文献   

16.
The aim of this study is twofold: to validate a computational fluid dynamics (CFD) model, and then to use the validated model to evaluate the performance of a ductless personalized ventilation (DPV) system. To validate the numerical model, a series of measurements was conducted in a climate chamber equipped with a thermal manikin. Various turbulence models, settings, and options were tested; simulation results were compared to the measured data to determine the turbulence model and solver settings that achieve the best agreement between the measured and simulated values. Subsequently, the validated CFD model was then used to evaluate the thermal environment and indoor air quality in a room equipped with a DPV system combined with displacement ventilation. Results from the numerical model were then used to quantify thermal sensation and comfort using the UC Berkeley thermal comfort model.  相似文献   

17.
The aim of this study is to develop a modeling methodology to assess thermal comfort and sensation of active people in transitional spaces and consider how comfort can be achieved by air movement while changing upper body clothing properties. The modeling is based on a bioheat model, capable of predicting segmental skin and core temperature from locally ventilated clothed body parts. The bioheat model is integrated with thermal comfort and sensation models to predict comfort in presence of air movement.The model accuracy in predicting comfort was validated by and agreed with the results of a survey administered to subjects wearing typical clothing at different activity levels to record their overall and local thermal sensation and comfort in a transitional space at Beirut summer climate. The transitional space temperature monitored during the experiments ranged between 27 °C and 30 °C.A parametric study is performed to assess thermal comfort in transitional spaces for different air movement levels and for three clothing designs. The high permeable clothing at 1.5 m/s and indoor temperature of 30 °C improved the Predicted Mean Vote to values less than 0.5 compared to 1.01 attained with typical low permeable clothing.  相似文献   

18.
The performance of a circular perforated panel (CPP) air terminal device for a personalized ventilation (PV) system operating under two levels of turbulent intensity (Tu) was examined. The impact of Tu on spatial distribution of the cooling effect on the facial region and whole body were studied through experiments carried out in an indoor environment chamber using a breathing thermal manikin and 24 tropically acclimatized subjects. The PV system was adjusted to deliver treated outdoor air over a range of conditions, which were presented blind to the subjects in a balanced order. Over a 15-min exposure, subjects voted their thermal sensation experienced at the facial region and whole body. At each of the conditions, the near body flow field characteristics and heat loss rate on each of the 26 body segments of the manikin were measured. The results indicate that over the range of PV air supply volume studied, by controlling the temperature and velocity of PV air supply at 15 cm from the face, PV air supplied at lower Tu, when compared against that supplied at higher Tu:
• Achieved a larger range of velocities at the face.

• Achieved a greater cooling effect on the head region.

• Achieved a lower facial thermal sensation, which has potential draft risks (when facial_thermal sensation vote <−1).

Keywords: Turbulence intensity; Personalized ventilation; Thermal manikin; Thermal sensation; Tropics  相似文献   


19.
This paper presents the findings of a field study of occupant thermal comfort and thermal environments with a radiant slab cooling system. The study combined field measurements and questionnaires based on the ASHRAE RP-921 project protocol. A total of 116 sets of data from 82 participants were collected in summer and winter. The results reveal that occupant whole-body thermal sensations with radiant cooling were consistent with the PMV model. The main advantage of radiant cooling for thermal comfort was found to be reduced local thermal discomfort with reduced vertical air temperature difference as well as reduced draft rate. The survey results revealed that 14–22% of participants in the study reported local cold discomfort in the arm–hand and the leg–foot regions. The results indicated that there may be lower limits on air speeds acceptable to occupants. Statistical analysis indicated that occupant thermal votes were free of significant correlation with personal, contextual and psychological factors. Suggestions to improve the questionnaire and the field survey process are offered.  相似文献   

20.
There are reputed to be only ten examples of the thermal manikin (a computerized doll) in the world at present. Here, the author discusses their potential in microclimate research, and describes experiments with a thermal manikin at the Hungarian Institute for Building Science (ETI) to identify the quality of indoor comfort conditions. One study revealed that the correct heating system would yield better results than extra thermal insulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号