首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance (‘source apportionment’) between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanised catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritisation of investment.  相似文献   

2.
The Water Framework Directive has caused a paradigm shift towards the integrated management of recreational water quality through the development of drainage basin-wide programmes of measures. This has increased the need for a cost-effective diagnostic tool capable of accurately predicting riverine faecal indicator organism (FIO) concentrations. This paper outlines the application of models developed to fulfil this need, which represent the first transferrable generic FIO models to be developed for the UK to incorporate direct measures of key FIO sources (namely human and livestock population data) as predictor variables.We apply a recently developed transfer methodology, which enables the quantification of geometric mean presumptive faecal coliforms and presumptive intestinal enterococci concentrations for base- and high-flow during the summer bathing season in unmonitored UK watercourses, to predict FIO concentrations in the Humber river basin district.Because the FIO models incorporate explanatory variables which allow the effects of policy measures which influence livestock stocking rates to be assessed, we carry out empirical analysis of the differential effects of seven land use management and policy instruments (fiscal constraint, production constraint, cost intervention, area intervention, demand-side constraint, input constraint, and micro-level land use management) all of which can be used to reduce riverine FIO concentrations.This research provides insights into FIO source apportionment, explores a selection of pollution remediation strategies and the spatial differentiation of land use policies which could be implemented to deliver river quality improvements.All of the policy tools we model reduce FIO concentrations in rivers but our research suggests that the installation of streamside fencing in intensive milk producing areas may be the single most effective land management strategy to reduce riverine microbial pollution.  相似文献   

3.
The importance of faecal indicator organism (FIO) fluxes within drainage basins is increasing as the European Union (EU) Water Framework Directive and the United States Clean Water Act place requirements on regulators to manage point and diffuse sources of microbial pollution causing non-compliance (EU) or impairment (US) of receiving waters. Central to this management task is knowledge of the likely FIO concentrations in raw sewage and treated effluents, but few empirical data have been published in the peer-reviewed literature. Accordingly, this paper presents results for 1933 samples from 162 different sewage discharge sites in the UK and Jersey, which encompass 12 types of sewage-related discharge, representative of untreated sewage and primary-, secondary- and tertiary-treated effluents. Geometric means (GMs) and 95% confidence intervals (CIs) have been used to characterise base- and high-flow FIO concentrations. The data sets and sub-sets are mostly quite large (n 40) and may therefore be applied with some confidence to comparable discharge sites in similar geographical regions. Very marked, statistically significant reductions in GM FIO concentrations result from secondary and tertiary treatment, and there are statistically significant differences between some secondary and some tertiary treatments. Flow conditions are also shown to be important: untreated sewage and effluent from primary treatment plant have lower concentrations at high flow, due to dilution within combined sewerage systems, whereas some treated effluents (e.g. from activated sludge plant) have higher concentrations at high flow because of the shorter residence time within the plant. Under base-flow conditions, secondary treatments result in estimated GM FIO reductions of 95.22-99.29% (cf. primary-treated effluent). Corresponding figures for tertiary treatment plants (cf. secondary-treated effluent) are 93.24-96.59% for reedbed/grass plots and 99.71-99.92% for UV disinfection. Results suggest that secondary and tertiary treatment plants are less effective under high-flow conditions, but further high-flow sampling is required to confirm this.  相似文献   

4.
Crowther J  Kay D  Wyer MD 《Water research》2002,36(7):1725-1734
Faecal-indicator budget studies have shown marine bathing water quality at two small UK coastal resorts, Staithes and Newport, to be adversely affected by riverine inputs from lowland pastoral catchments (J. Chartered Inst. Water Environ. Mangt. 12 (1998) 414). The present paper reports on presumptive coliform (PC), presumptive Escherichia coli (PE) and presumptive streptococci (PS) concentrations at 43 sampling points on watercourses within these catchments, and on their relationship with land use and livestock-related management practices, such as grazing and slurry/manure applications. The results show > 10-fold elevations in geometric mean faecal-indicator concentrations under high-flow conditions, compared with low flow, with maximum high-flow geometric mean PC, PE and PS concentrations of 2.6 x 10(6), 1.8 x 10(6) and 4.4 x 10(5) cfu/100 ml, respectively. High-flow geometric mean concentrations exhibit highly significant positive correlations with land use/management variables associated with intensive livestock farming, both within the individual catchments and in the two combined. Additional factors, such as antecedent weather conditions and topography, contribute to inter-catchment variability in water quality. Although inputs from diffuse and point sources of pollution were not quantified, point sources (e.g. runoff from farm yards) seem likely to be significant. The findings suggest that it may be possible to develop generic statistical models to predict microbial water quality from land use and farm management data. They also provide indirect evidence that channel bed sediment 'stores' closely reflect land use within their catchments and that there is little die-off of organisms along watercourses.  相似文献   

5.
The Ribble drainage basin is the single UK sentinel study area chosen for examining the implementation of the EU Water Framework Directive (WFD 20/60/EC). The study which has generated the data for this paper was initiated to quantify 'catchment-derived' fluxes of faecal indicators originating from both point and diffuse sources to inform the competent authorities on the potential for, and prioritization of, further options for reducing the faecal indicator loadings to this crucial coastal environment. It represents the first UK drainage basin-scale 'profile' of faecal indicator sources as recommended by WHO [1999. Health Based Monitoring of Recreational Waters: The Feasibility of a New Approach; the "Annapolis Protocol". World Health Organisation Geneva, Switzerland; 2003. Guidelines for Safe Recreational-Water Environments Volume 1: Coastal and Fresh-Waters. World Health Organisation Geneva, Switzerland] and incorporated into current drafts of the revised Bathing Water Directive [Anon, 2004. Council of the European Communities Amended proposal for a Directive of the European Parliament and of the Council concerning the management of bathing water quality. Brussels 23rd June]. This paper focuses on the relationships between land use and faecal indicator organism concentrations in surface waters within this very large drainage basin (1583 km2) containing some extensive urban areas. A geographical information system comprising readily available digital elevation, remotely sensed land cover and digital map data was used to generate the land use variables for subcatchments draining to 41 locations across the study area. Presumptive concentrations of coliforms, Escherichia coli and enterococci (colony forming unit (cfu) 100 ml(-1)) were measured at each location on at least 20 occasions over a 44-day period within the 2002 bathing season. The sampling programme targeted hydrograph events. Hydrometric records were used to allocate results as either base flow or high flow. At each site, geometric mean faecal indicator organism concentrations were significantly elevated at high flow compared to base flow. Stepwise regression modelling produced statistically significant models predicting geometric mean base and high-flow faecal indicator organism concentrations from land use variables (r2: 49.5-68.1%). The dominant predictor variable in each case was the proportion of built-up land in subcatchments, suggesting that this land use type, with associated sewage-related inputs, is a critical source of faecal indicator organisms in this drainage basin.  相似文献   

6.
Increasing DOC concentrations in surface waters have been observed across parts of Europe and North America over the past few decades. Most proposed explanations for these widespread trends invoke climate change or reductions in sulphate deposition. However, these factors do not seem apposite to explain either the fine-scale (within kilometres) or regional-scale spatial variation in DOC concentrations observed across the UK.We have reconstructed DOC concentrations and land use for one North Pennine and five South Pennine catchments (UK), located in three discrete areas, over the last four decades. Rainfall, temperature and sulphate deposition data, where available, were also collated and the potential influence of these factors on surface water DOC concentrations was assessed.Four of the six catchments examined showed highly significant (p < 0.001) increases (53-92%) in humic coloured DOC (hDOC) concentrations in drainage waters over the period 1990-2005. Changes in temperature and sulphate deposition may explain 20-30% of this trend in these four catchments. However, the rapid expansion of new moorland burn on blanket peat can explain a far greater degree (> 80%) of the change in hDOC. Far smaller increases in hDOC (10-18%) were identified for the two remaining catchments. These two sites experienced similar changes in sulphur deposition and temperature to those that had seen largest increases in DOC, but contained little or no moorland burn management on blanket peat.This study shows that regional-scale factors undoubtedly underlie some of the recent observed increases in drainage humic coloured DOC. However, changes in land management, in this case the extensive use of fire management on blanket peat, are a far more important driver of increased hDOC release from upland catchments in some parts of the UK. It suggests that the recent rapid increase in the use of burning on blanket peat moorland has implications for ecosystem services and carbon budgets.  相似文献   

7.
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.  相似文献   

8.
In order to effectively manage nutrient river load reductions and target remediation strategies, it is important to determine the relative contributions of diffuse and point sources across the river catchment. This study used a geographical information system (GIS) to apply phosphorus (P) export coefficients (obtained from the literature) to 58 water quality monitoring sites across a large, urbanised, mixed land use catchment, typical of southern lowland England (the River Avon, Warwickshire, UK). These coefficients were used to estimate the annual P load at each monitoring site, and also the relative contribution of point source (from sewage treatment works (STW)) and diffuse input (from both livestock and agricultural land use). The estimated annual P loads showed very close agreement (r2=0.98) with the measured total phosphorus (TP) loads. Sites with the highest proportion of P derived from STW had the highest TP concentrations and loads, and also had greater variations between seasons, with elevated P concentrations occurring during the summer months. The GIS model was re-run to determine the effect of an 80% reduction in P output from STW serving over 10,000 people, thereby assessing the effect of implementing the European Union's Urban Waste Water Treatment Directive (UWWTD). The exported TP load was reduced by 52%, but the sites with the highest TP concentrations were still those with the highest proportion of P derived from STW. The GIS model was re-run to estimate the impact of 80% P reductions at a further 11 STW of varying sizes. This reduced the total TP load by only 29 tonnes year-1, but greatly reduced the P concentrations in many highly nutrient contaminated tributaries. The number of sites with P concentrations greater than 1 mg l-1 was cut from 15 (before UWWTD implementation) to 2. These findings suggest that after UWWTD implementation, resources should focus on introducing tertiary sewage treatment at the remaining large STW, before targeting diffuse inputs. This conclusion is also likely to apply to other lowland river catchments in southern England, most of which have similar population densities to the River Avon.  相似文献   

9.
'Natural' treatment systems such as wetlands and reed beds have been proposed as sustainable means of reducing fluxes of faecal indicator organisms (FIOs) to recreational and shellfish harvesting waters. This is because FIO fluxes to coastal waters from both point (effluent) and diffuse (catchment) sources can cause non-compliance with microbiological standards for bathing and shellfish harvesting waters. The Water Framework Directive requires competent authorities in the member states to manage both point and diffuse sources of FIOs in an integrated manner to achieve compliance with 'good' water quality as defined in a series of daughter Directives. This study was undertaken to investigate the relative sources of FIOs to the popular bathing waters around Clacton, UK. In this predominantly arable (mainly cereal cropping) farming area, the principal land use predictor, explaining 76% of the variance in geometric mean presumptive Escherichia coli concentration at sub-catchment outlets during the bathing season, was the proportion of built-up (i.e. urbanised) land in each sub-catchment. This new finding contrasts with earlier studies in livestock farming regions where the proportion of improved grassland has proven to be the strongest predictor of microbial concentration. Also novel in this investigation, a flood defence wall has been built creating a wetland area which discharges every tidal cycle. The wetland produces over 97% reduction in the flux and concentrations of FIOs to the marine recreational waters. Also, FIO concentrations in water draining through the wetland to the sea were similar to concentrations measured in six UK sewage treatment plant effluents subject to secondary (biological) treatment followed by UV disinfection.  相似文献   

10.
Bacterial source tracking from diverse land use catchments by sterol ratios   总被引:1,自引:0,他引:1  
Water samples from sites potentially impacted by septic tanks, cattle, sewage treatment plant (STP) and natural forests were collected at regular monthly intervals and within 48 h of rainfall events between October 2004 and June 2006. All samples (n=296) were analysed for faecal coliforms and faecal sterols including coprostanol, epicoprostanol, cholestanol, cholesterol and 24-ethylcoprostanol. Faecal sterol ratios were used to assign human and/or herbivore contamination sources and to estimate their percentage relative contributions in water samples. The catchments had significantly different profiles of designated contamination origins (p<0.05), which were consistent with land use patterns. The STP impacted site had the highest incidence of human contamination assignations and the highest mean levels of coprostanol, whilst the forested site had the highest incidence of uncontaminated samples and the lowest mean concentration of coprostanol. Coprostanol concentrations were not always correlated with faecal coliform counts.  相似文献   

11.
The importance of soil storage in global carbon cycling is well recognised and factors leading to increased losses from this pool may act as a positive feedback mechanism in global warming. Upland peat soils are usually assumed to serve as carbon sinks, there is however increasing evidence of carbon loss from upland peat soils, and DOC concentrations in UK rivers have increased markedly over the past three decades. A number of drivers for increasing DOC release from peat soils have been proposed although many of these would not explain fine-scale variations in DOC release observed in many catchments.We examined the effect of land use and management on DOC production in upland peat catchments at two spatial scales within the UK. DOC concentration was measured in streams draining 50 small-scale catchments (< 3 km2) in three discrete regions of the south Pennines and one area in the North Yorkshire Moors. Annual mean DOC concentration was also derived from water colour data recorded at water treatment works for seven larger scale catchments (1.5-20 km2) in the south Pennines. Soil type and land use/management in all catchments were characterised from NSRI digital soil data and ortho-corrected colour aerial imagery.Of the factors assessed, representing all combinations of soil type and land use together with catchment slope and area, the proportion of exposed peat surface resulting from new heather burning was consistently identified as the most significant predictor of variation in DOC concentration. This relationship held across all blanket peat catchments and scales.We propose that management activities are driving changes in edaphic conditions in upland peat to those more favourable for aerobic microbial activity and thus enhance peat decomposition leading to increased losses of carbon from these environments.  相似文献   

12.
Microbial source tracking techniques are used in the UK to provide an evidence-base to guide major expenditure decisions and/or regulatory action relating to sewage disposal. Consequently, it is imperative that the techniques used robustly index faecal indicator organisms (FIOs) that are the regulatory parameters for bathing and shellfish harvesting areas. This study reports a ‘field-scale’ test of microbial source tracking (MST) based on the quantitative PCR analyses of Bacteroidales 16S rRNA genetic marker sequences. The project acquired data to test the operational utility of quantitative Bacteroidales MST data, comparing it with FIO concentrations in streams, effluents and bathing waters. Overall, the data did not exhibit a consistent pattern of significant correlations between Bacteroidales MST parameters and FIOs within the different sample matrices (i.e. rivers, bathing waters and/or effluents). Consequently, there was little evidence from this study that reported concentrations and/or percentages of human and/or ruminant faecal loadings (that are based on Bacteroidales MST gene copy numbers) offer a credible evidence-base describing FIO contributions to receiving water ‘non-compliance’. The study also showed (i) there was no significant attenuation of the Bacteroidales gene copy number ‘signal’ through the UV disinfection process; and (ii) single non-compliant samples submitted for Bacteroidales MST analysis, do not reliably characterise the balance of faecal loadings due to the high variability in the MST signal observed.At this stage in the development of the MST tool deployed, it would be imprudent to use the percentage human and/or ruminant contributions (i.e. as indicated by MST data acquired at a bathing water) as the sole or principal element in the evidence-base used to guide major expenditure decisions and/or regulatory action.  相似文献   

13.
Phosphorus (P) concentrations from water quality monitoring at 54 UK river sites across seven major lowland catchment systems are examined in relation to eutrophication risk and to the relative importance of point and diffuse sources. The over-riding evidence indicates that point (effluent) rather than diffuse (agricultural) sources of phosphorus provide the most significant risk for river eutrophication, even in rural areas with high agricultural phosphorus losses. Traditionally, the relative importance of point and diffuse sources has been assessed from annual P flux budgets, which are often dominated by diffuse inputs in storm runoff from intensively managed agricultural land. However, the ecological risk associated with nuisance algal growth in rivers is largely linked to soluble reactive phosphorus (SRP) concentrations during times of ecological sensitivity (spring/summer low-flow periods), when biological activity is at its highest. The relationships between SRP and total phosphorus (TP; total dissolved P+suspended particulate P) concentrations within UK rivers are evaluated in relation to flow and boron (B; a tracer of sewage effluent). SRP is the dominant P fraction (average 67% of TP) in all of the rivers monitored, with higher percentages at low flows. In most of the rivers the highest SRP concentrations occur under low-flow conditions and SRP concentrations are diluted as flows increase, which is indicative of point, rather than diffuse, sources. Strong positive correlations between SRP and B (also TP and B) across all the 54 river monitoring sites also confirm the primary importance of point source controls of phosphorus concentrations in these rivers, particularly during spring and summer low flows, which are times of greatest eutrophication risk. Particulate phosphorus (PP) may form a significant proportion of the phosphorus load to rivers, particularly during winter storm events, but this is of questionable relevance for river eutrophication. Although some of the agriculturally derived PP is retained as sediment on the river bed, in most cases this bed sediment showed potential for removal of SRP from the overlying river water during spring and summer low flows. Thus, bed sediments may well be helping to reduce SRP concentrations within the river at times of eutrophication risk. These findings have important implications for targeting environmental management controls for phosphorus more efficiently, in relation to the European Union Water Framework Directive requirements to maintain/improve the ecological quality of impacted lowland rivers. For the UK rivers examined here, our results demonstrate that an important starting point for reducing phosphorus concentrations to the levels approaching those required for ecological improvement, is to obtain better control over point source inputs, particularly small point sources discharging to ecologically sensitive rural/agricultural tributaries.  相似文献   

14.
Nutrient enrichment of freshwaters continues to be one of the most serious problems facing the management of surface waters. Effective remediation/conservation measures require accurate qualitative and quantitative knowledge of nutrient sources, transport mechanisms, transformations and annual dynamics of different nitrogen (N) and phosphorus (P) forms. In this paper, nitrate (NO3-N), soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations and loads are presented for two adjacent rural basins of 306 km2 and 424 km2, and for five sub-basins differing in size (between 1 km2 and 33 km2), land use (extent of forest cover between 20% and 93%) and household pressure (from 0 to 40 people/km2) with the aim of studying the influence of land use and catchment size on nutrient exports. The studied catchments are all situated on Devonian schistous substrates in the Ardennes region (Belgium-Luxembourg), and therefore have similar hydrological regimes. As the study period could not be the same for all basins, annual export coefficients were corrected with the 25 years normalized discharge of the Sure River: two regression analyses (for dry and humid periods) relating monthly nutrient loads to monthly runoff were used to determine correction factors to be applied to each parameter and each basin. This procedure allows for the comparing annual export coefficients from basins sampled in different years. Results show a marked seasonal response and a large variability of NO3-N export loads between forested (4 kg N ha-1 year-1), agricultural (27-33 kg N ha-1 year-1) and mixed catchments (17-22 kg N ha-1 year-1). For SRP and TP, no significant agricultural impact was found. Land and bank erosion control the total P massflow in the studied catchments (0.4-1.3 kg P ha-1 year-1), which is mostly in a particulate form, detached and transported during storm events. Soluble reactive P fluxes ranged between 10% and 30% of the TP mass, depending on the importance of point sources in the basins studied. No relation was found between the size of the basins and the export of nitrate, SRP or TP. Nutrient export, specially for NO3-N and TP, shows significant inter-annual variations, closely linked to inter-annual discharge variations. Flow and load frequency data analysis confirm this association for all the basins on an annual basis. Seasonal or storm specific fluxes strongly deviate from their annual values.  相似文献   

15.
The introduction of ultraviolet disinfection in Jersey has achieved significant improvements in water quality. However, bathing waters in St Aubin's Bay and shellfish flesh have failed to comply with microbial standards. Streams and seepages from coastal structures were investigated as potential indicator organism sources (total and faecal coliforms, faecal streptococci). Seepages were an unimportant bacterial source as concentrations were low. Geometric mean concentrations in streams were up to four orders of magnitude higher than in final sewage-treatment works effluent, and concentrations increased significantly at high stream discharge. Rainfall-induced pulses of poor water quality occurred two to three times per week during the 1993 summer season. Natural discharges from island catchments thus contribute significantly to the bacterial load received at the coast, especially during high flow events. These observations have implications for other UK and European schemes using tertiary disinfection technology to attain water quality targets in coastal waters.  相似文献   

16.
In this study, 12 catchments sites located along the north coast of New South Wales in Australia were grouped into the four categories of septic, cattle, sewage treatment plant (STP) and forested sites via cluster analysis based on their land use patterns. Water samples from all these sites were collected between October 2004 and June 2006 at a regular monthly interval and within 48 h of rain events. The samples were analyzed for bacterial counts including faecal coliform and total coliform; faecal sterols including coprostanol, epicoprostanol, cholesterol, cholestanol, 24-ethylcoprostanol, campesterol, stigmasterol and beta-sitosterol; and the elements including Na, Rb, Sr, Ag, Cd, Sn, Cs, Ba, Hg, Tl, Pb, Bi, U, Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, K, As, Se, P and Mo. Over the course of the sampling period, the STP site had the highest average coprostanol level of 1693+/-567 ng/L which was significantly higher (p<0.05) than the septic sites (190+/-71 ng/L), the cattle sites (163+/-94 ng/L) and forested sites (14+/-4 ng/L). As expected, the forested sites had significantly lower average level of faecal coliforms (373+/-87 cfu/100 mL) compared with the STP (1395+/-574 cfu/100 mL), septic (1243+/-494 cfu/100 mL) and cattle sites (535+/-112 cfu/100 mL). The concentrations of coprostanol were not correlated with the numbers of faecal coliform bacteria when the entire data set was evaluated. The forested sites generally had the lowest average levels of elemental compositions, with significantly lower levels noted for Na, U, Mg, V, Cu, Sr, K, As, P and Mo, whereas Fe was the only element notably higher in the forested sites. Temporal and rain events analyses of the data set revealed that elevated levels of both coprostanol and faecal coliforms were not exclusive to rain events. The average coprostanol levels in rain event samples at each site were not significantly different compared with the corresponding dry event samples. Conversely, faecal coliform numbers increased by 2-4 times in rain events samples from septic, cattle and forested sites, but did not alter in the STP site. Multivariate analyses identified coprostanol and Sr as major contributing factors for the discrimination of septic, cattle, STP and forested sites for both rain and dry events samples. It was clear that each land use type of catchment could be characterized by biochemical, bacteriological and elemental parameters.  相似文献   

17.
Stutter MI  Langan SJ  Demars BO 《Water research》2007,41(12):2803-2815
This study evaluates water quality, suspended and bed sediment, ecological and catchment land use data for 13 catchments of the mixed land use River Dee, NE Scotland, where pollution point sources are limited. Samples were collected at key times of biological activity (early and late summers). Mean river water concentrations were smaller in main stem and upland sites and greater in tributaries where agricultural pressures were greater and were 2-41 microgPO(4)-Pl(-1), 8-58 microg total dissolved Pl(-1) and 1-6 mg l(-1) of suspended particulate matter (SPM). SPM was 7-372 times enriched in biologically available P (BAP; determined using an FeO paper strip method) and 2-122 times in organic C relative to bed sediments. Ratios in river water concentrations of BAP attributed to the SPM (0.1-1.0 microgPl(-1)) to PO(4)-P had the greatest range at baseflow (0.01-0.80) with larger values for low land use intensity catchments. During May chlorophyll a concentrations were related to SPM BAP (p<0.001), but later in summer to PO(4)-P, and there was a corresponding change in the organic composition of SPM observed by IR spectroscopy. SPM concentrations and SPM BAP were better related to intensive grassland land use (p<0.001) than was PO(4)-P concentration (p<0.01) and also predicted abundances of filter feeding macroinvertebrates (p<0.001). Within this river system SPM quantity and composition proved to be an indicator of river biogeochemical functioning and requires further investigation as a potentially sensitive monitoring tool and to increase our understanding of chemical ecological links.  相似文献   

18.
Defining the sources of low-flow phosphorus transfers in complex catchments   总被引:2,自引:1,他引:2  
Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km(2)) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination.  相似文献   

19.
Quantitative assessment of multiple sources to short-term variations in recreational water quality, as indexed by faecal indicator organism (FIO) concentrations, is becoming increasingly important with adoption of modern water quality standards and catchment-based water quality management requirements (e.g. the EU Water Framework Directive, Article 11 ‘Programmes of Measures’ and the US Clean Water Act, ‘Total Maximum Daily Loads’). This paper describes a study combining microbial tracers, intensive FIO measurement, open channel hydrology and molecular microbial source tracking (MST) to enhance understanding of recreational water quality at Amroth in southwest Wales, UK. Microbial tracers were released from four stream inputs during a moderate hydrograph event. Tracers from two local streams impacted simultaneously with a period of maximum FIO concentrations at the near-shore compliance monitoring site. Connection between these inputs and this site were rapid (9-33 min). Water quality impairment from a more remote stream input followed, 12.85 h after tracer release, sustaining FIO concentrations above desired compliance levels. MST analysis showed dominance of ruminant Bacteroidales genetic markers, associated with agricultural pollution. This integration of tracers and MST offers additional information on the movement and individual sources causing water quality impairment.  相似文献   

20.
Changes in phosphorus concentration and form along 110 km of the River Swale in Northern England were examined over a 2-year period during 1998-2000. This study aimed to use these data to identify the importance of within-channel storage on phosphorus dynamics and to determine the changes in longitudinal transport of phosphorus along a river continuum. The catchment was divided into three contrasting zones: the upland, dominated by sheep farming; a transitional zone, and an intensively-farmed lowland, impacted by sewage inputs. Samples, taken at the downstream extent of each zone at approximately 2-day intervals, were analysed for total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP), all of which increased in concentration downstream. SRP concentrations were highest in summer and during low flows, although 92% of phosphorus was exported between autumn and spring. The TDP in the upper and transitional zones consisted of both soluble reactive and un-reactive phosphorus, but in marked contrast was almost entirely in soluble reactive form in the lowland. The majority (85%) of phosphorus exported from the catchment was generated within the lowland, due to sewage inputs and losses from intensive agricultural land. It was predominantly particulate-bound, due to interactions of dissolved phosphorus with suspended sediment. The upland contributed less than 5% to the TP annual budget. Intensive river water monitoring highlighted that the lowland dominated phosphorus export during the rising stage of storms (indicating a rapid mobilisation of fine phosphorus-rich sediment), whereas the transitional zone became dominant on the falling stage (due to greater diffuse phosphorus input).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号