首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
对昆明地区压实红黏土开展直剪与三轴试验,研究了压实红黏土在不同含水率与压实度状态下的抗剪强度特征。结果表明:压实红黏土的抗剪强度随着含水率的增加而降低,随着压实度的增大而增大;黏聚力跟内摩擦角均随着含水率的增大而减小、随压实度增大而增大;含水率小于最优含水率时,含水率的变化对黏聚力影响较大,当含水率大于最优含水率时对黏聚力影响相对较小;压实红黏土的抗剪强度跟含水率以及压实度成线性关系。两种试验结果得到的抗剪强度参数变化趋势相同,但数值差别较大,直剪试验得到的黏聚力为三轴试验的0.58倍,内摩擦角为三轴试验的1.34倍。  相似文献   

2.
兰州马兰、离石压实黄土抗剪强度影响因素探讨   总被引:1,自引:0,他引:1  
抗剪强度是压实黄土的重要力学指标,在不同压实和含水状态下,土体的抗剪强度存在明显差异。对兰州青白石马兰、离石压实黄土进行了直剪试验,得到不同压实度和含水率下的黏聚力和内摩擦角,探讨了含水率和压实度对压实黄土抗剪强度的影响。结果表明:黏聚力随压实度的增大而增大,且离石黄土增大幅度大于马兰黄土;含水率小于最佳含水率时黏聚力随含水率的增大略有增大,当含水率大于最佳含水率后黏聚力随含水率的增大反而急剧减小;离石黄土和马兰黄土内摩擦角均随压实度增大而增大、随含水率增大略有减小。  相似文献   

3.
《土工基础》2016,(3):391-394
对渭南地区回填黄土进行不同含水率重塑后直剪试验,得到其抗剪强度以及强度参数。结果表明,相同围压下抗剪强度随含水量的增大而减小,粘聚力随含水量呈先增大后减小的趋势,内摩擦角随含水量线性减小。天然含水率下直剪试验的剪切速率对重塑土的强度参数有一定影响。  相似文献   

4.
压实粘性土是静水压力和应变率相关性材料,在低围压下表现出软化现象,在高围压下表现出硬化现象.在同一含水率,不同围压下粘性土随周围压力的增大,同一轴向应变所对应的偏应力也越大;压实度一定时,含水率越高,粘聚力越大,而摩擦角越小,粘性土的抗剪强度越弱;含水率一定时,压实度越高,粘聚力越大,而摩擦角越小,抗剪强度也越大.利用TSZ10-1.0型应变控制式三轴仪,对四川绵阳地区粘性土进行了常规三轴压缩试验,研究了不同围压和含水率下粘性土的应力-应变关系、抗剪强度指标,并对粘性土的剪切带破坏进行了拟合分析.  相似文献   

5.
压实粘性土是静水压力和应变率相关性材料,在低围压下表现出软化现象,在高围压下表现出硬化现象。在同一含水率,不同围压下粘性土随周围压力的增大,同一轴向应变所对应的偏应力也越大;压实度一定时,含水率越高,粘聚力越大,而摩擦角越小,粘性土的抗剪强度越弱;含水率一定时,压实度越高,粘聚力越大,而摩擦角越小,抗剪强度也越大。利用TSZ10-1.0型应变控制式三轴仪,对四川绵阳地区粘性土进行了常规三轴压缩试验,研究了不同围压和含水率下粘性土的应力-应变关系、抗剪强度指标,并对粘性土的剪切带破坏进行了拟合分析。  相似文献   

6.
为了研究季冻地区过湿土的抗剪强度特性,利用青冈过湿土路基段原状土进行抗剪强度试验,分析了不同含水量对过湿土的抗剪强度影响,重点研究了冻融循环作用下过湿土抗剪强度变化规律。试验结果表明:不同含水量的过湿土应力应变曲线均趋于硬化型,含水量越大,过湿土的抗剪强度越小,相应的内摩擦角和黏聚力也越小;同未冻融土相比,经冻融循环的过湿土黏聚力显著增加,内摩擦角减小;相同含水量的过湿土经冻融循环的次数越多,融化后土的抗剪强度越大,而且随着冻融次数的增多,黏聚力开始下降,内摩擦角显著增大。  相似文献   

7.
在坝前淤泥面加坝中,淤泥坝基和新填筑坝体的接触面是整个加坝体的薄弱部位。以宁夏南部山区西吉县南川水库坝前淤泥面加坝工程为研究对象,在参考该工程勘察报告和施工组织设计的基础上,通过改进常规应变式直剪仪测定了在不同工况下淤泥土和新填土接触界面的抗剪强度参数,分析了淤泥土的含水率和压实度对接触面的抗剪强度、黏聚力和内摩擦角的影响。试验结果表明:淤泥―新填土接触面剪切特性受淤泥土的含水率和压实度共同影响;压实度相同时,随着淤泥含水率的增加,接触面抗剪强度先小幅度减小再快速减小,黏聚力先增大再快速减小,接触界面内摩擦角小幅度减小;含水率相同时,随着压实度的增加,界面抗剪强度增大,内摩擦角增大,黏聚力先缓慢增加,再快速增加,具有明显阶段性。  相似文献   

8.
压实度及含水率是影响砂性土填料抗剪强度指标的重要因素。以厦蓉高速漳州段砂性土填料为研究对象,通过击实试验和18组正交设计的直剪试验,对不同含水率及压实度下砂性土填料的抗剪强度指标进行研究。击实试验结果表明,砂性土填料的最大干密度为1.88g/cm3,最优含水率为10.2%。直剪试验结果表明:砂性土填料的内摩擦角随压实度的增大呈近似线性增长,但与含水率无明显相关;砂性土填料的黏聚力随压实度的增大呈近似线性增长,同时随含水率的增大先增大后减小,在最佳含水率附近达到最大值。  相似文献   

9.
重金属污染对土压实性及抗剪强度影响的试验研究   总被引:1,自引:0,他引:1  
通过在实际重金属冶炼企业的尾矿库、废料堆填区采取重金属尾矿样品,与代表性净土进行掺和,配制了不同压实度、不同龄期、不同掺和比的重金属污染土样;在各自的最优含水量下,进行击实和直接剪切等物理力学试验,研究重金属污染对土的压实特性与抗剪强度的影响规律。试验表明:1)重金属污染对土体击实特性的影响,金属Mn的影响不大,Pb、Zn、Cd、Cr影响较大,后者表现为随掺和比增大,最优含水量减小,土的最大干密度增大;2)随着重金属污染土体压实度的增大,土的黏聚力C逐渐增大的,内摩擦角φ值逐渐降低,污染土的强度指标明显低于重塑净土的抗剪强度指标;3)重金属污染的作用效应是一个缓慢的过程,随着重金属污染物作用时间的延长,土的黏聚力c值下降,内摩擦角φ值上升;4)随着污染浓度的增加,土的黏聚力c值增大,则φ值呈降低趋势。  相似文献   

10.
为了研究掺入PE材料对粘性土抗剪强度的影响,本文对PE-粘土混合土进行了力学性质的研究。通过大量的不固结不排水常规三轴试验得出以下结论:在混合土容重一定的前提下,随着PE含量的增高混合土的压实度逐渐增大,粘聚力c值逐渐增大,内摩擦角φ值呈现出先减小后增大的趋势。  相似文献   

11.
为研究压实度对非饱和红粘土的强度和变形的影响规律,以云南腾陇公路路基填土为研究对象,利用非饱和土三轴仪,对3个不同压实度的36个红粘土试样进行了控制吸力的三轴剪切试验,研究结果表明:压实度、吸力和净围压对非饱和红粘土应力-应变曲线性状均有较大影响;红粘土的干密度越大,试样越容易发生脆性破坏;有效粘聚力、有效内摩擦角和吸力摩擦角均随干密度的增大而呈线性增长趋势;干密度相同时,有效内摩擦角随基质吸力的变化较小,可视为常数,而粘聚力随基质吸力的增加,近似线性增大;红粘土的偏应力-应变曲线可用双曲线描述。研究成果可为该地区的红粘土工程问题提供科学依据和有益参考。  相似文献   

12.
 岩石具有黏结和摩擦特性,但两者在同一位置并不同时存在。裂隙摩擦力随围压增加,达到邻近完整岩石黏结力后将不再滑移引起材料破坏,影响试样强度的裂隙倾角范围随之减小,引起强度非线性增加。主控裂隙引起强度在低围压下线性变化,但不能以Coulomb准则直接确定岩石的内摩擦角。砂岩内存在多种倾角的自然裂隙,引起单轴压缩及低围压的强度离散,围压增高裂隙影响减小,强度随围压规则变化而以指数准则描述;轴向压缩塑性变形引起大理岩黏结力由低向高逐步丧失,而热力损伤引起黏结力整体降低;冻结使岩石黏结力提高而内摩擦角不变。若岩石具有宏观各向同性特征,则常规三轴强度可用指数准则描述,据其确定的初始围压影响系数可估计裂隙摩擦系数;进而理解裂隙对试样强度影响的非线性特征,评价岩石材料的真实黏结力和损伤。  相似文献   

13.
高温后粗砂岩常规三轴压缩条件下力学特性 试验研究   总被引:13,自引:5,他引:8  
 通过在MTS815.03电液伺服岩石力学试验机上对焦作方庄煤矿煤层顶板粗砂岩进行高温后常规三轴压缩试验,基于试验结果研究不同温度作用后常规三向压缩条件下粗砂岩宏观力学特性,分析粗砂岩强度、平均模量、黏聚力、内摩擦角和极限应变与温度的关系;同时对粗砂岩强度、平均模量与围压关系进行探讨。研究结果表明,围压一定,温度为25 ℃~300 ℃时,随着温度的升高,试样的强度、平均模量、黏聚力、内摩擦角均逐渐增大,而变形模量有所降低。高温产生的热应力起到容纳变形和裂隙闭合作用,砂岩试件部分原生裂隙逐渐愈合,裂隙数量减少,密实程度提高,矿物颗粒间接触关系得到改善,摩擦特性得以增强;超过300 ℃ 以后,随着温度的升高,粗砂岩试样的强度、平均模量、黏聚力、内摩擦角均有所减小,而峰值变形逐渐增大,由高温引起的粗砂岩矿物颗粒的不同热膨胀率导致跨颗粒边界的热膨胀不协调,从而产生结构热应力使试样内部产生微裂隙,试样承载能力和抗变形能力减弱。而围压对粗砂岩的力学性质起到改善和强化作用,当温度一定时,随着围压的升高,粗砂岩试件强度、平均模量、黏聚力、内摩擦角均逐渐增大。  相似文献   

14.
软弱岩石峰后应变软化力学特性研究   总被引:14,自引:7,他引:7  
 软弱岩石给采矿工程中巷道支护和维护带来一系列棘手的问题,深入研究软弱岩石受力变形、破坏的机制和规律,对于保证巷道围岩的安全和稳定具有十分重要的意义。通过对软弱泥岩进行常规三轴压缩试验,得到不同围压下的全应力–应变关系曲线,然后依据峰后岩石任意一点应力状态均满足Mohr-Coulomb极限破坏条件的假设,建立以广义黏聚力 和广义内摩擦角 两个状态参数来表征的软弱岩石后继屈服面模型。在此基础上,利用试验数据绘制岩石峰后不同软化状态时的几组莫尔应力圆,通过“切线法”得出莫尔强度包络线的拟合方程,进而确定出不同围压条件下的 和 值,并借助Matlab软件对广义黏聚力 、广义内摩擦角 与等效塑性剪切应变、围压之间的关系进行最小二乘曲面拟合,得出软弱岩石峰后力学参数的软化规律,结果表明:随着围压的增加,广义黏聚力 值呈快速增加的趋势,而广义内摩擦角 值则显著减小;广义黏聚力 受岩石软化程度的影响也十分明显,从岩石峰值状态到残余状态 值迅速降低,平均降低53.88%,而广义内摩擦角 值在该软化过程中则基本保持稳定。最后,将得到的广义黏聚力 和广义内摩擦角 的拟合方程嵌入到FLAC内置应变软化本构关系中,并利用FLAC3D软件对模型的正确性进行数值模拟验证,结果表明数值模拟曲线与试验曲线比较吻合。  相似文献   

15.
为研究水蒸气增湿对重塑黄土抗剪强度指标的影响,以兰州市大青山地区重塑黄土为研究对象,进行不同水蒸气压力(0.05MPa、0.1MPa)下的重塑黄土高温高压水蒸气扩散柱增湿,采用快剪试验研究不同水蒸气压力增湿作用下土体抗剪强度指标的变化规律。结果表明,同一深度处,水蒸气增湿后土体的含水率沿径向减小,抗剪强度沿径向递增,水蒸气压力0.1MPa时各点处的抗剪强度均小于水蒸气压力0.05MPa时;距水蒸气扩散柱15cm处的土体含水率终将达到土体自身性质所决定的最大值,故15cm处土体的抗剪强度基本相同;同一深度处黏聚力沿径向增大,内摩擦角总体沿径向增长,但增长极小,同一点处水蒸气压力0.1MPa时的黏聚力、内摩擦均小于水蒸气压力0.05MPa时;沿深度方向,与通气点相同距离处的土体黏聚力表现出随填筑层数的增加而增加,内摩擦角没有明显差异。  相似文献   

16.
高围压、高水压条件下岩石卸荷力学性质试验研究   总被引:2,自引:2,他引:0  
 为探悉某深埋长引水隧洞围岩在高地应力、高水压力条件下的稳定性,对隧洞的主要岩体大理岩、砂岩和板岩进行常规三轴压缩试验、峰前峰后卸围压试验以及高水压力下的卸荷试验,对此过程中的强度和变形特征进行较为系统的对比分析研究。研究结果表明:卸围压对岩石的强度影响很大。卸荷后,岩石的黏聚力和内摩擦角均有较大幅度的降低,特别是有水压时,降低更是明显;卸荷对黏聚力的影响比对内摩擦角的影响大。卸荷后,黏聚力的降低幅度比内摩擦角要大;峰前卸荷对岩石强度的影响比峰后卸荷要大。峰前卸荷,岩石破坏时围压比峰后卸荷高;有水压卸荷对岩石强度的影响比无水压卸荷要大。有水压时卸荷,由于水压的存在,削弱围压对岩石的影响,使岩石在比无水压卸荷时更高的围压下即发生破坏。  相似文献   

17.
徐小丽  高峰  张志镇 《岩土工程学报》2014,36(12):2246-2252
利用MTS815.02电液伺服材料试验系统完成了不同温度作用后(25℃~1000℃),不同围压下的30块花岗岩岩样的三轴压缩试验,分析了温度、围压对岩样的变形以及强度特性的影响。试验结果表明:①岩样质量随着温度的升高小幅下降,1000℃时仅比25℃时下降了0.364%;温度低于600℃时,岩样体积、密度变化不明显,温度高于600℃时,体积加速膨胀,密度减小幅度增大,1000℃时体积比25℃时膨胀了5.027%,密度降低了5.132%。②高温作用后,岩样三轴压缩应力-应变曲线大致经历了压密、弹性、屈服、破坏、软化、残余等几个阶段,岩样的刚度、峰值强度、抗剪强度、残余强度、塑性变形均随着围压的增大而增大。③岩样黏聚力随着温度的升高呈线性下降,内摩擦角随着温度的升高先增大后减小,抗剪强度随着温度的升高呈二次多项式减小关系,围压的增大削弱了温度对抗剪强度的影响。  相似文献   

18.
高压力下尾矿砂的强度与变形特性   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过三种尾矿砂的三轴剪力试验对尾矿砂在高压力下的变形与强度特性进行了研究。试验表明,颗粒破坏的数量随着剪切变形和侧限压力的增大而增多,与试样的初始密度却无直接关系。在高压力下摩尔包线的形状稍弯曲,在本文试验的压力范围内(侧限压力小于70kg/cm2),内摩擦角比在通常试验的压力下(侧限压力小于10kg/cm2),可减小达8°~13°,比砂土在同样条件下减小得多一些。因此在进行尾矿坝稳定与变形分析时,都应考虑这种影响,即根据高压力下的试验结果,计算尾矿砂的抗剪强度、切线模量与切线油松比。文中对用低压力下内摩擦角所算得的切线模量、切线泊松比和考虑高压力下强度非线性变化计算的数值进行了比较。试验还表明,高压力下的切线泊松比,用但尼尔建议的方法进行计算与实测资料相符,用轴向应变与侧向应变为双曲线关系的假设进行计算则相差较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号