首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we describe a study of biological denitrification by immobilized cells. Nitrates are reduced in sterile solutions by Pseudomonas aeruginosa immobilized in a fixed bed reactor, and in synthetic waste water by mixed cultures immobilized into a fluidized bed reactor.The fixed bed reactor is a Plexiglas column filled with corn stovers (Table 1). It is 0.05 m in diameter and 0.55 in height, its volume being approx. 11. The fresh medium is injected at the base of the column and the liquid level is regulated by an overflow weir. Reactor and carrier are sterilized with ethylene-oxide. After sterilization 1 l. of a growing batch culture of Pseudomonas aeruginosa is introduced aseptically and the reactor is then fed continuously (45 ml h?1) with fresh medium (NNO3 = 40 mg l?1) until the first steady state is reached.Nitrates and nitrites are determinated by means of a colorimetric method.Reactor efficiency remains constant for over 40 days. Nitrates and nitrites concentrations are measured inside the reactor for flow varying from 2 to 16 ml min?1 (Fig. 2). Reductions of nitrates and nitrites seem to be two first-order reactions (Fig. 3 and Table 2) and constant rate increases with flow rate (Fig. 4). Until nitrate concentration reaches 960 mg/l?1 (NNO3) degradation is correct (Figs 5 and 6), beyond nitrites, which have been formed, seem to be inhibitor.Using this reactor, 50 mg NNO3 have been reduced per hour and per liter of empty reactor, but it may be possible to reduce 140 mg NNO3 l?1 h?1 if fresh medium contains 200 mg NNO3 l?1.The fluidized bed reactor is a Plexiglas column filled with earthenware. It is 0.05 m in diameter and 3.15 m in height, its volume being approx. 6.201. Fresh medium is injected at the base of the column and the liquid level is regulated by an overflow weir. Figure 7 shows the retention time of the liquid in the reactor in relation to flow. The first steady state has been reached after 2 weeks, and it has not been possible to know half life time of the column.Four experiments were conducted (Table 3) and, for each nitrate, nitrite and methanol concentrations in the reactor were measured (Fig. 8). So, it appears that reduction of nitrates and nitrites are two first-order reactions (Table 4) and that constant rate values, which are higher than in fixed bed reactor, increase with flow.The reactor is more affected by a flow shift than by a nitrate concentration shift in fresh medium, and biomass linked onto carrier is about 76 mg of dry matter g?1 of earthenware.So, our fluidized bed column is able to reduce 560 mg NNO3 h?1 l?1 of empty reactor, then retention time of liquid is less than 3 min.  相似文献   

2.
Attached-cell reactors using a bed of granular material for wastewater treatment develop a high biomass concentration which allows an important reduction of the required residence time (Jeris et al., 1977; Elmaleh, 1982). In nitrification of ammonia containing wastewater, oxygen is currently the limiting substrate; in theory, 4.18 g of oxygen are required per 1 g of nitrogen (Painter, 1970). Oxygen can be added with hydrogen peroxide (Grigoropolou, 1980; Seropian, 1980; Yahi et al., 1982) which is nevertheless expensive and it seems better to transfer oxygen from a gas phase, i.e. air, to the liquid phase through a fixed bed (Charpentier, 1976).Two attached-cell reactors (Fig. 1) were operated in parallel for nitrification of ammonia containing synthetic wastewater (Table 2). Air was upflowed through a granular packing (Table 1) maintained in fixed bed while the liquid influent was injected at co- or counter-current.
1. (1) Owing to the high oxygen transfer properties of the system and to the fact that the thickness of biofilm is always less than 100 μm, the whole process was not limited by oxygen concentration of which remained larger than 7 mg l−1 (Fig. 2a) (Bungay et al., 1969). Oxidised nitrogen ammonia is completely converted into nitrate (Fig. 2b). Experimental conditions are given in Table 3.
2. (2) The plot of ammonia conversion against air superficial velocity shows a maximum (Fig. 3) after which conversion decreases rapidly by overloading of the packing (Prost, 1965). Experimental conditions are given in Table 4.
3. (3) Process efficiency decreases when superficial upflow velocity is increased (Fig. 4).
4. (4) Complete abatement of inlet pollution is reached when nitrogen concentration is less than 25 mg l−1 (Fig. 5) which corresponds to a volumetric loading up to 0.6 kg N (NH4+) m−3 day−1.
Moreover, the experimental data were fitted to a model based on classical assumptions (Roques, 1980; Grady, 1982; Atkinson and Fowler, 1974; Grasmick et al., 1979; Grasmick, 1982; Harremoes, 1976, 1978; Jennings et al., 1976; Williamson and MacCarty, 1976); i.e. zero order intrinsic kinetics and diffusion transport (Table 5), and recently developed (Grasmick, 1982; Rodrigues et al., 1984). This model provides, particularly, a very easy method to check its own use—in reaction regime and in diffusion regime—when time spans or inlet concentration are changed; experimental results can indeed be plotted in such a way that straight lines are obtained (Table 6). Figures 6 and 7 show the data obtained with the counter-current nitrification reactor when respectively inlet concentration and time spans are varied. The plotted straight lines show that the overall reaction is zero order and that, therefore, the biofilm is fully penetrated. A critical time span θc and a critical inlet concentration Cc, for which complete conversion is achieved, are then calculated, θc is theoretically proportional to C1 which is verified in Fig. 8. The straight line θc vs C1 can then be used in reactor design.  相似文献   

3.
The objective of this study is to develop a technique to remove ammonium ion from water intended for potable purposes. An ion exchange method is used with a selective ion exchanger, a natural cation zeolite, clinoptilolite. Glass columns (Fig. 1) are used for laboratory experiments. These experiments show that the NH4+ exchange capacity is very small compared to its total capacity 2.17 meq g−1; its value depends essentially on the NH4+ initial concentration and less on the Ca2+ concentration in the influent water. Figure 3 illustrates the practical exchange capacity relative to the initial concentration of ammonium ion for a soft water (Ca2+ = 35–50 mg l−1). We were particularly interested in waters weak in ammonium ion concentration (NH4+ = 1–3 mg l−1). In this case and for 1 and 2 mg l−1 NH4+ concentration in water, the practical capacity is only 0.06 and 0.108 meq g−1 respectively. The leakage is smaller than the ECC limit (European Community Council) for drinking waters (NH4+ 0.5 mg l−1) and the treated volume of water to breakthrough, defined at 0.5 mg l−1 of NH4+, is 720 BV (BV = bed volume) in both cases.In another way Fig. 6 shows that hard waters (due to Ca2+ ions) are more difficult to treat than soft waters. The practical capacity is smaller than before and the NH4+-leakage is greater. To lessen NH4+-leakage to less than 0.5 mg l−1 for soft waters down-flow and up-flow, regeneration is used. Figure 7 shows that up-flow regeneration is more attractive than down-flow regeneration.Cycle reproducibility (Figs 4 and 5) shows that the regeneration conditions satisfied our requirements: in this case, the salt consumption is 180 eq of salt per eq of NH4+ eliminated. This prompted us to try to reuse the regenerant (with NH4+ ion). An increase of NH4+-leakage is noticed in the presence of an NH4+-residual in the regenerant. This increase is more significant with down-flow regeneration.After these laboratory experiments, we carried out a semi-industrial pilot-plant. Our objective was first to verify the laboratory results and secondly to study clinoptilolite behaviour relative to the time it was used. Two plexiglass columns comprise the pilot-plant shown in Fig. 9; soft water is used for these experiments. The first column is regenerated with fresh salt solution. The cycles obtained, considering their initial NH4+-concentration, are reproduced in Fig. 10. For 2 mg l−1 NH4+ in the influent water, the leakage is about 0.2 mg l−1 and the treated volume to breakthrough (0.5 mg l−1 of NH4+) is about 750 BV. The second column is regenerated with a recycled solution. The quality of the cycles decreases with the number of reuse of the regenerant as shown in Fig. 11. Nevertheless, it is interesting to note that after 3 reuses, the performance decrease is only 25% and the leakage, although it increases is smaller than 0.5 mg l−1.Pilot results allowed us to propose a treatment of 30,000 m3 day−1; the cost per cubic meter water treated, relative to NH4+-removal, is about 0.165 FF (0.033 US $) for a plant and 0.77 FF (0.014 US $) for the same plant at the seaside. Using two serial columns decreased the cost by about 40–50%.  相似文献   

4.
The individual effect of trivalent arsenic, hexavalent chromium and fluoride on nitrification is studied under continuous load in a packed bed biological flow reactor. The results show that Michaelis-Menten rate expression gives the best representation of nitrification data in the absence of inhibitors. However, in the presence of inhibitors, the system follows a non-competitive mode of inhibition with the following rate expression: The values of Vmax and Ks are estimated as 1.466 mg l−1 min−1 and 2.349 mg l−1 respectively. The inhibitor constant Ki is evaluated as 273 mg l−1 for trivalent arsenic, 56 mg l−1 for hexavalent chromium and 1185 mg l−1 for fluoride.  相似文献   

5.
This study presents and demonstrates results obtained from an half full-scale upflow fixed bed reactor (UFBR) treating a primary settled domestic sewage. This study used expanded clay with an effective size of 2.7 mm containing hematite and magnetite as a granular medium.The content of TSS in the effluent treated was always between 10 and 20 mg l−1 for bed depths ranging from 2 to 3 m and filtration rates of 3–6 m3m−2h−1.The profiles taken all along the reactor show that the activity of the biomass is constant over the whole height of the reactor. Moreover, an air/water volume ratio of 2:1 is amply sufficient to satisfy the oxygen demand of the biomass. The average removal efficiency based on the soluble COD remains virtually unchanged as a function of the filtration rate at about 70% of the influent. For a final BOD5 of 30 mg l−1, loadings of 4.5–8 kg BOD5m−3 can be applied. This corresponds to filtration rates of 3–6 m3m−2h−1. The removal efficiencies for BOD5 are then about 80%.After optimization of the backwashing conditions, the consumption of backwash water is about 5% of the volume of filtered water.Sludge measurements carried out during our experiments indicate an excess sludge production of 1 kg kg−1 BOD5 eliminated. The nature of these sludges is very similar to the biological sludges produced in the high rate activated sludge process.This study has made it possible to establish design parameters of an UFBR and to develop technology for applications. These results are applied to two wastewater treatment plants which began to operate in 1984: these plants serve population equivalents of 40,000 and 11,000.  相似文献   

6.
In order to fulfill the objective of a water control program based on frequent sampling in several wastewater treatment plants, rivers and lakes a simplified method for measuring COD was developed. The procedure, in this article called the RR-method, includes: small sample and reagent volume; rapid addition of a mixture of all reagents to the sample; exclusion of mercury; autoclaving at 120°C for 1 h in flasks with fitted glass stoppers. To avoid dilution before analysis the method has been adapted for wastewater (I: 10–300 mg O2 l−1) and fresh water (II: 10–100 mg O2 l−1).Parallel analyses on different types of water samples according to Standard Methods showed that the yield by the RR-method was about 10% lower (Table 2). With water from the wastewater treatment plant at Uppsala (COD around 20 mg O2 l−1), the two methods gave an identical result. The somewhat lower yield was mostly due to decreased dichromate concentration and oxidation temperature. The lower oxidation potential made correction for chloride interference unnecessary below 1 g Cl l−1 (Table 1).The RR-method also showed a good correlation to the values for KMnO4-consumption. Parallel analyses of 318 samples from 14 wastewater receiving lakes gave the correlation coefficient r = +0.90 (Fig. 1).  相似文献   

7.
Role of aquatic plants in wastewater treatment by artificial wetlands   总被引:12,自引:0,他引:12  
This report describes investigations using artificial wetlands which quantitatively assess the role of each of three higher aquatic plant types, Scirpus validus (bulrush), Phragmites communis (common reed) and Typha latifola (cattail), in the removal of nitrogen (via sequential nitrification-denitrification), BOD and TSS from primary municipal wastewaters. During the period August 1983–December 1984, the mean ammonia concentration of 24.7 mg l−1 in the primary wastewater inflow (hydraulic application rate = 4.7 cm day−1) was reduced to mean effluent levels of 1.4 mg l−1 for the bulrush bed, 5.3 mg l−1 for the reed bed and 17.7 mg l−1 for the cattail bed, as compared to a mean value of 22.1 mg l−1 for the unvegetated (control) bed. For all three vegetated beds, the mean effluent ammonia values were significantly below that for the unvegetated bed and for the inflow. The bulrushes and reeds (in that order) proved to be superior at removing ammonia, both with mean effluent levels significantly below that for the cattail bed. The high ammonia-N (and total N) removal efficiencies shown by the bulrush and reed beds are attributed to the ability of these plants to translocate O2 from the shoots to the roots. The oxidized rhizosphere so formed stimulates sequential nitrification-denitrification. Similarly BOD removal efficiencies were highest in the bulrush and reed beds, both with mean effluent BOD levels (5.3 and 22.2 mg l−1, respectively) significantly below that for the unvegetated bed (36.4 mg l−1) and equal to or better than secondary treatment quality (30 mg l−1). Our results demonstrate that higher aquatic plants can indeed play a significant role in secondary and advanced (N removal) wastewater treatment by wetland systems, a role that is completely distinct from that associated with their pollutant uptake capacity.  相似文献   

8.
The present work shows that a supply which is not sterile and which contains organic matter does not interfere with the performance of a column filled with a support previously inoculated with Nitrobacter winogradskyi serotype agilis.Measurements of oxidation rates give results higher than those obtained under axenic conditions (maximum oxidation rate: 220 mg NO2 h−1 l−1 of reactor volume under non-sterile conditions: 160 mg NO2 h−1 l−1 of reactor volume under axenic conditions).This finding has concentrated our work on the effect of heterotrophic bacteria and of organic matter on the growth of Nitrobacter. We show that a fermentation filtrate of a heterotrophic bacterium (Pseudomonas sp.) added to a fermenter culture of Nitrobacter produces an increase of activity. Experimental results indicate an appreciable reduction in the latence period (15-0 h) and a considerable increase in the rate of growth of Nitrobacter. (Maximum growth rate with 10% of heterotrophic filtrate: 0.044 h−1; without filtrate: 0.032 h−1.)  相似文献   

9.
The comparative toxicity of total residual chlorine (TRC) and chlorine dioxide (ClO2) was evaluated by conducting 96 h flow-through bioassays with three types of fish. The fish were subjected to an intermittent exposure regime in which biocide residuals were present for approx. 2-h periods beginning at 0, 24, 48 and 72 h into the tests. These conditions simulated the antifouling procedure (1 h day−1 biocide addition) used to control biofouling of nuclear reactor heat exchangers at the Savannah River Plant near Aiken, South Carolina. LC50 values showed that ClO2 was approx. 2–4 times more toxic than TRC to: (1) juvenile and 1-year-old fathead minnows (Pimphales promelas); and (2) young-of-the-year bluegill (Lepomis macrochirus).The TRC mean 96-h LC50 values were: 0.08 mg l−1 for juvenile fathead minnows, 0.35 mg l−1 for adult fathead minnows and 0.44 mg l−1 for young-of-the-year bluegills. The ClO2 mean LC50 values were: 0.02 mg l−1 for juvenile fathead minnows, 0.17 mg l−1 for adult fathead minnows and 0.15 mg l−1 for young-of-the-year bluegills.  相似文献   

10.
A survey of inhibitory effects of nonionic and anionic surfactants, including a soap, used in washing agents, on the growth on three species of freshwater phytoplankton, Selenastrum capricornutum, Nitzschia fonticola and Microcystis aeruginosa was conducted. Based on the specific growth rate, μu estimated from a short period (2 or 3 days) cultivation of test algae, the growth inhibition was determined using EC50 values where μu in the culture medium with surfactant decreased 50% of that without surfactant.The EC50 values of nonionic and anionic surfactants tested here for S. capricornutum ranged from 2 to 50 mg l−1 and from 10 to 100 mg l−1, respectively. The tolerances of three species of algae tested with three surfactants, LAS, AE (EO:9) and soap, were different and the inhibitory effects were species specific. EC50 values of LAS, AE (EO:9) and soap for S. capricornutum were 50–100, 4–8 and 10–50 mg l−1, respectively. Those for N. fonticola were 20–50, 5–10 and 20–50 mg l−1, and those for M. aeruginosa were 10–20, 10–50 and 10–20 mg l−1, respectively.  相似文献   

11.
Cyanide ion present in seawater after scrubbing blast furnace and coke ovens gases can be removed by sedimentation of hexacyanoferrate complexes followed by oxidation of residual cyanide with Caro's acid. Zinc ion is removed at the same time by adsorption on the hexacyanoferrate/hydrous ferric oxide precipitate.Sulphide is precipitated as ferrous sulphide, then oxidised by atmospheric oxygen. At 25°C and using an Fe/CN ratio of 1·00, initial concentrations of 50 mg l−1 of CN and 10 mg l−1 of Zn2+ in seawater are reduced to 5–7 mg l−1 and 0·1 mg l−1. Subsequent treatment with H2SO5/CN = 1·2 reduces the [CN] to 0·1 mg l−1.Treatment of a combined blast furnace/coke ovens effluent ([CN] = 24 mgl−1, [Zn2+] = 4·0 mgl−1) with Fe/CN = 1·5 reduced [CN] to 0·2 mg l−1 and [Zn2+] to <0·1 mgl−1. Subsequent treatment with H2SO5/CN = 2·0 reduced [CN] to 0·2 mg l−1. The process operates best in the pH range 7–9 and so is not affected by the buffer characteristics of seawater.  相似文献   

12.
Lead was found to be highly toxic to rainbow trout in both hard water (hardness 353 mg l−1 as CaCO3) and soft water (hardness 28 mg l−1. Analytical results differ greatly with methods of analysis when measuring concentrations of lead in the two types of water. This is exemplified in LC50's and maximum acceptable toxicant concentrations (MATC's) obtained when reported as dissolved lead vs total lead added in hard water. Two static bioassays in hard water gave 96-h LC50's of 1.32 and 1.47 mg l−1 dissolved lead vs total lead LC50's of 542 and 471 mg l−1, respectively. In a flow-through bioassay in soft water a 96-h LC50 of 1.17 mg l−1, expressed as either dissolved or total lead, was obtained. From chronic bioassays, MATC's of lead for rainbow trout in hard water were between 18.2 and 31.7 μg l−1 dissolved lead vs 120–360 μg l−1 total lead. In soft water, where exposure to lead was initiated at the eyed egg stage of development, the MATC was between 4.1 and 7.6 μg l−1. With exposure to lead beginning after hatching and swim-up of fry, the MATC was between 7.2 and 14.6 μg l−1. Therefore, fish were more sensitive to the effects of lead when exposed as eggs.  相似文献   

13.
Preliminary testing of eight collectors (xanthates) and four frothers in 96-h static and 28-day flow-through bioassays using rainbow trout as the test organism show a great disparity in the toxicity of the chemicals administered in these two ways.For the short-term tests, the relative toxicity of the compounds is expressed as an lc50 or as a range of concentration in mg l−1 in which the lc50 is expected to fall. Of the collectors tested in this way sodium ethyl and potassium amyl xanthate were the most toxic, with lc50's in the range of 30–50 mg l−1. Among the frothers, xylenol (cresylic acid) was found to be the most toxic (5.6 mg l−1 >lc50 > 3.2 mg l−1) while polypropylene glycol was least toxic (lc50 > 1000 mg l−1).The long-term tests using potassium ethyl, sodium isopropyl, sodium ethyl, and potassium amyl xanthate indicated that in the flow-through system, the toxicity of the chemicals was in the order of 100 fold greater compared with the static bioassay results.  相似文献   

14.
P.D. Goulden  Y.P. Kakar   《Water research》1976,10(6):491-495
Modifications have been made to the curcumin and 1,1′-dianthrimide methods for boron analysis so that they may be used in the presence of up to 700 mg l−1NO3 and 500 mg l−1 organic carbon. In the curcumin method, nitrate is removed by alkaline reduction using a slurry of aluminum powder. In the dianthrimide method, nitrate up to 1000 mg l−1NO3 is removed in the dehydration-with-sulfuric-acid step; organics are most conveniently removed by treatment of the dehydrated sample with solid potassium persulfate. With dianthrimide, an automated procedure is used for the colour formation and measurement steps.  相似文献   

15.
Preliminary studies were carried out on the leaching of copper, zinc, chromium, cadmium and lead from eight kitchen faucets by samples of raw, filtered and distributed Ottawa water, a sample of well water and deionized water containing 2 mg l−1 aqueous fulvic acid. Leaching was effected by allowing the test solutions to stand in the inverted faucets for two successive 24-h periods. Concentrations of the metals found in the leachates were copper: first leaching, 0.12–28.0 mg l−1, second leaching, 0.08-3.54 mg l−1; zinc: first leaching, 0.13-10.25 mg l−1, second leaching, 0.06-2.85 mg l−1; chromium: first leaching, < 1.0 × 10−3 − 0.395 mg l−1, second leaching, < 1.0 × 10−3−0.032 mg l−1; cadmium: first leaching, < 0.05 × 10−3−0.01 mg l−1, second leaching, < 0.05 × 10−3−4 × 10−3 mg l−1; and lead: first leaching, < 0.2−110.0 mg l−1, second leaching, < 0.2−82.0 mg l−1. The faucets containing lead-soldered copper joints released high concentrations of lead, particularly in the case of leaching with the aqueous fulvic acid solution. Under the conditions of the present investigations it is indicated that in some cases the concentrations of metals leached could lead to intakes in excess of the maximum permissible limits for these metals. However, further investigations will be required to determine the possible contribution of these faucets to metal intake under normal usage.  相似文献   

16.
In view of the desire to improve the water quality of the heavily polluted branches of the Shatt al-Arab River at the City of Basrah, it was proposed to maintain effective flushing as well as contracting sewerage system. The present study was conducted in order to examine the water quality of these branches in an attempt to evaluate the effectiveness of the proposed flushing system. It has been found that their waters contained very low levels of dissolved oxygen and relatively high amounts of both COD and BOD5. The annual average water quality parameters for Basrah Branches were: dissolved oxygen 3.4 ppm; pH 7.67; hydrogen sulphide 1.4 ppm; ammonia 97 μg-at. N l−1; COD 15.9 mg l−1; BOD5 12.7 mg l−1; dissolved silicates 202 μg-at. Si l−1; dissolved reactive phosphate 13.4 μg-at. P-PO43− l−1; nitrate 10.4 μg-at. N-NO3 l−1; nitrite 2.1 μg-at. N-NO2 l−1 and chlorophyll-α 14.3 mg m−3. Based on our calculations, it has been concluded that the proposed system is effective, thus within a flushing cycle all of the above mentioned parameters will become within the acceptable values of the Shatt al-Arab water quality. Moreover, this system has no appreciable effect upon the water quality characteristics of the Shatt al-Arab River due to the fact that it discharges a high volume of water annually. However, It has been recommended to dredge the deposited sludge to a minimum depth of 50 cm.  相似文献   

17.
A hypolimnetic aeration system was recently installed in a small (16 ha Sα) eutrophic lake and a comparison made between measured performance and predicted performance from an empirical sizing method. The design variables used to size the system were: hypolimnetic volume 451,600 m3; maximum hypolimnetic oxygen consumption 0.2 mg l−1 d−1; aerator input rate 2 mg l−1; water velocity 0.76 m s−1 and depth of air release 12.2 m. A 3.7 kW compressor (0.57 m3 min−1) generated a water velocity of 0.46 m s−1, a water flow of 17.7 m3 min−1 and a theoretical hypolimnetic circulation period of 18 days. Dissolved oxygen increased by an average of 1.6 mg l−1 on each cycle through the aerator, and aerator input rates ranged from 0.6 to 2.6 mg l−1. Hypolimnetic oxygen consumption averaged 0.12 mg l−1 d−1 and ranged between 0.02 and 0.21 mg l−1 d−1. The aeration system was unable to meet the daily oxygen demand (90 kg) as the water velocity was slower than expected (0.46 m s−1). To avoid undersizing future aeration installations the following recommendations should be considered when using the empirical sizing formula: (1) estimates of oxygen consumption should be annual maximums from aerobic hypolimnia; (2) aerator input rates should be conservative (e.g. 1–4 mg l−1) and increase with depth; (3) water velocity of 0.45–0.50 m s−1 should initially be used when no information on actual bubble size or velocity is available; (4) aeration start-up should be timed to avoid periods of accumulated oxygen demands.  相似文献   

18.
The mean 96-h LC50's of silver with rainbow trout were 6.5 μg l−1 and 13.0 μg l−1 in soft water (approximately 26 mg l−1 hardness as CaCO3) and hard water (350 mg l−1 hardness as CaCO3), respectively. The long-term, “no effect” concentration for silver, added to the water as silver nitrate, was between 0.09 and 0.17 μg l−1 after 18 months exposure in soft water. The “no effect” concentration is that concentration range which defines no observed effect. Based on mortalities different from the control, no mortalities attributable to silver occurred at 0.09 μg Ag l−1, whereas 17.2% mortality occurred to fish exposed to 0.17 μg ll−1. The “no effect” concentration does not reflect possible effects of silver on spawning behavior or reproduction, since female rainbow trout will not generally reach sexual maturity before 3 yr. At silver concentrations of 0.17 μg l−1 or greater, silver caused premature hatching of eggs and reduced growth rate in fry. In one experiment, the eggs were completely hatched within 10 days of exposure; whereas, control eggs completed hatching after 42 days. The prematurely erupted fry were not well developed and frequently died. The growth rate of surviving fry was greatly reduced.  相似文献   

19.
A significant change was noted in the aquatic (vO2), aerial (VO2) and total [(v + V)O2] consumption of Anabas testudineus (Bloch) exposed to 4.0 and 10.5 mg l−1 disyston and 0.56 and 1.56 mg l−1 furadan. After 1 h of exposure to all the concentrations significant decreases were noticed in the (v + V)O2. Though significant increases were noted in all the measures of respiration after 3 h of exposure in both the pesticides, their effects vary from one exposure period to another. The fish held in 4.0 mg l−1 disyston and 0.56 mg l−1 furadan concentrations resumed normal pattern of bimodal respiration after 120 and 96 h respectively. Further the pattern of changes in (v + V)O2 closely followed the changes observed in VO2 rather than vO2 indicating that the fish held in pesticide medium predominantly relied on aerial respiration. A direct correlation was noticed between the VO2 consumption and the surfacing frequency of the fish exposed to disyston and furadan. Relatively furadan is more toxic than disyston to Anabas testudineus if their effects on O2 consumption are taken into consideration.  相似文献   

20.
D.A. Benoit 《Water research》1976,10(6):497-500
Exposing brook trout to various concentrations of chromium [Cr(VI)] for up to 22 months (including reproduction) significantly increased alevin mortality at 0.35 mg Cr l−1 and retarded growth of young brook trout at the lowest concentration tested (0.01 mg Cr l−1). Eight month exposures of rainbow trout significantly increased alevin mortality at 0.34 mg Cr l−1 and also retarded growth at the lowest concentration tested (0.10 mg Cr l−1). Exposures of brook trout lasting 22 months showed, however, that growth was only temporarily affected, and therefore, it was not used as an end point to measure the affects of chromium on either species. Reproduction, and embryo hatchability of brook trout were unaffected at Cr(VI) concentrations that affected survival of newly hatched alevins. The maximum acceptable toxicant concentration (MATC) for brook and rainbow trout exposed to Cr(VI) in water with a hardness of 45 mg l−1 (as CaCO3) and a pH range of 7–8 lies between 0.20 and 0.35 mg Cr l−1. The 96-h lc50 for brook and rainbow trout was 59 and 69 mg Cr l−1, respectively: therefore, the application factor (MATC/96-h lc50) for both species lies between 0.003 and 0.006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号