首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 66 毫秒
1.
连梁是连接双肢剪力墙结构的主要构件,为了控制连梁在地震作用下进入塑性的部位,便于震后修复,可将连梁跨中部截面削弱,此段梁称作耗能梁段。地震作用下耗能梁段首先进入塑性耗能状态,为了使耗能梁段较早进入塑性耗能状态,提出了腹板开长圆孔型耗能梁段。通过ABAQUS有限元软件分析各参数下其刚度、承载力、延性、滞回性能及破坏形态,提出了其初始刚度和极限承载力计算方法。分析结果表明:长圆孔腹板耗能梁段具有良好的滞回性能,可实现屈曲前屈服;孔间柱长宽比β是影响耗能梁段承载力和滞回性能的决定因素,双列孔耗能梁段性能优于单列孔;考虑上、下翼缘对耗能梁段影响的初始刚度和极限承载力计算结果与有限元结果较为吻合。  相似文献   

2.
在偏心支撑钢-混凝土组合框架结构中,采用传统的剪切连梁虽然可以有效提升框架结构的抗侧刚度和耗能能力,但是其引起的附加弯矩会导致框架梁跨中混凝土严重开裂,不利于地震后的结构修复。为避免框架梁跨中混凝土板的开裂破坏,提出钢腹板弯折的剪切连梁,该连梁从框架梁侧面与梁腹板连接,可以有效地减少剪切连梁对框架梁引起的附加弯矩,从而防止其跨中混凝土板的开裂。试验中共设计制作5个钢腹板弯折的剪切连梁并进行了拟静力试验,分析了不同材料、弯折工艺以及加劲肋构造对剪切连梁受力性能的影响。结果表明:钢腹板弯折的剪切连梁具有稳定的耗能能力,采用低屈服点LY160钢材相比于传统的Q235钢材可使剪切连梁延性系数从2.66提高至3.77,弯折工艺对于剪切连梁受力性能的影响较小,加劲肋可有效约束剪切连梁腹板的面外变形,防止面外屈曲破坏的发生,并使得构件的极限荷载提高53.7%,极限塑性转角提高55.5%,耗散的能量增加190%。面外肋板约束构造不仅能起到与加劲肋一样的效果,还能进一步提升构件的延性和耗能效率。  相似文献   

3.
为了提高连柱支撑钢结构的耗能能力,增加耗能连梁进入塑性程度,提出在支撑柱脚设置碟簧的构造措施。采用有限元软件ABAQUS建立带碟簧柱脚连柱支撑钢框架结构模型,对模型进行低周往复加载,分析其破坏机理,并考虑了耗能连梁非弹性转角和耗能连梁长度等设计参数对其滞回性能的影响。分析结果表明:柱脚设置碟簧的连柱支撑钢结构破坏模式理想,耗能连梁率先进入塑性,塑性变形充分,耗能能力好。柱脚抬起越大,耗能连梁塑性发展程度越大,建议耗能连梁非弹性转角取0.06~0.08 rad;耗能连梁应设计成剪切屈服型,耗能连梁长度越短,结构耗能性能越好、抗侧刚度越大,建议耗能连梁长度e取值范围为(0.95~1.54)M_p/V_p,其中M_p和V_p分别为耗能连梁的塑性抗弯承载力和抗剪承载力。  相似文献   

4.
葛俊  赵宝成 《钢结构》2019,34(3):9-15
为了提高连柱钢支撑结构耗能能力,增加耗能连梁进入塑性的程度,提出在柱脚处设置耗能连梁,形成柱脚可耗能的连柱钢支撑结构形式。设计了柱脚耗能的连柱钢支撑结构试件,采用ABAQUS有限元分析软件,对试件进行低周往复加载,分析耗能连梁长度和支撑跨跨度等设计参数对结构滞回性能的影响。分析结构的滞回曲线、骨架曲线、刚度退化曲线以及耗能能力等方面的特征,结果表明:柱脚可耗能的连柱钢支撑结构滞回曲线比较饱满,耗能能力较强,破坏模式是较为理想的。随着耗能连梁长度增加,结构的承载力和刚度下降,结构的耗能能力呈现先增加后降低的趋势,建议耗能连梁长度取值范围(1. 0~1. 51) Mp/Vp,其中,Mp为耗能连梁的塑性抗弯承载力,Vp为耗能连梁的抗剪承载力。随着支撑跨跨度的增加,结构的承载力和刚度以及耗能能力方面都有所增加。  相似文献   

5.
在往复荷载作用下,设置加劲肋的耗能梁段首先在加劲肋与腹板之间的焊缝开始破坏,为了改善这一情况,提出不设置加劲肋腹板开长圆孔的耗能梁段构造形式。采用ABAQUS有限元软件分析了长圆孔腹板耗能梁段的滞回性能,系统考虑了各设计参数对耗能梁段承载力、滞回性能及抵抗面外失稳等的影响。分析结果表明:长圆孔腹板耗能梁段均可以实现屈曲前屈服,具有良好的滞回性能;腹板孔间柱长宽比β是决定耗能梁段承载力和滞回性能的决定因素;在开孔率和孔间柱长宽比一定的条件下,增加开缝列数可以提高耗能梁段抵抗面外失稳的能力,但其承载力和耗能能力下降;增加腹板厚度可以提高耗能梁段承载力和抵抗面外失稳的能力,而增加翼缘厚度对承载力和抵抗面外失稳的能力影响很小,其破坏形式多为孔间柱发生弯扭失稳。建议开孔列数m≥2,孔间柱长宽比β1,孔列与孔列之间的间距不小于3倍孔间柱宽度,开孔率P∈(5%,15%)。  相似文献   

6.
高强钢组合偏心支撑是指耗能连梁采用普通钢材(Q345),而框架梁、柱等非耗能构件采用高强度钢材(Q460)的偏心支撑结构,这种结构体系不仅有效降低了构件截面,而且有助于高强度钢材的应用推广。为了研究其抗震性能,对1∶2缩尺比例的三层高强钢组合K形偏心支撑钢框架整体试件进行了低周往复加载试验,耗能连梁均为剪切屈服型。试验结果表明:高强钢组合K形偏心支撑结构具有较高的承载能力、良好的位移延性和耗能能力,二层耗能连梁的腹板受剪撕裂是试件破坏的标志,导致整体结构的承载力下降。试件最终破坏时,非耗能构件基本处于弹性受力状态,耗能连梁的弹塑性变形消散了大部分地震能量。另外,高强钢组合K形偏心支撑结构的延性指标受耗能连梁长度(e)与框架梁长度(L)比值影响,也与耗能连梁的转动能力有关,e/L越大,耗能连梁越接近于弯曲破坏,延性性能越好。  相似文献   

7.
连柱钢支撑框架结构是一种新型的功能可恢复结构,为了增大耗能连梁的剪切变形程度,提高耗能能力,将支撑柱脚设计为可抬起柱脚,并在柱脚处设置摩擦耗能阻尼器.采用ABAQUS软件建立了摩擦型耗能柱脚连柱钢支撑结构有限元分析模型,对试件结构进行了低周往复加载,通过改变支撑尺寸及耗能连梁高度来改变支撑和耗能连梁的刚度比,分析其破坏模式和滞回性能.结果表明:柱脚设置摩擦阻尼器的连柱钢支撑框架结构具有良好的屈服时序,耗能连梁塑性发展充分,结构具有较强的耗能能力.支撑截面大小对结构耗能能力影响较小,但支撑截面不宜过大,否则会导致柱脚先于支撑屈服,支撑截面亦不宜过小,否则会导致支撑过早发生弹塑性屈曲.耗能连梁为结构主要耗能构件,随着耗能连梁高度的增加,结构刚度和承载力增大,耗能能力显著提高,因此耗能连梁刚度不宜过小.建议支撑与耗能连梁的刚度比不小于160,在此范围内,可保证耗能连梁充分耗能破坏前,支撑不发生弹塑性屈曲.  相似文献   

8.
文章率先提出一种新型防屈曲高强钢腹板可更换钢连梁(简称“新型钢连梁”):腹板采用高强钢,可提高钢连梁的屈服抗剪强度,连梁变形减小,从而减小可更换结构整体变形,便于更换;加劲肋紧贴腹板(但不焊接)提供约束,仅与上下翼缘焊接,可减少60%以上的焊接量。其次,设计并开展了11个试件的拟静力试验,研究了加劲肋间距(规范限值dmax、0.85dmax)、腹板厚度(6mm、8mm)、腹板钢材强度(Q460、Q550)和构造形式(加劲肋与腹板贴紧或焊接)等参数对新型钢连梁抗震性能的影响。试验结果表明:试件均发生剪切破坏;满足加劲肋间距限值的新型钢连梁,滞回曲线饱满,峰值时腹板未发生鼓曲且极限转角均超过0.1rad,大于规范限值0.08rad,表现出良好的耗能和变形能力;缩小加劲肋间距、增加腹板厚度或提高腹板钢材强度,新型钢连梁刚度及承载力提高;新型钢连梁峰值承载力较传统构造试件低约5%。最后,基于试验结果建立了有限元模型并开展了分析,研究结果表明:对腹板采用Q460、Q550高强钢材的新型钢连梁,峰值承载力计算时超强系数建议取1.43(长度比为0.5~1.0)或1.39(长度比为1.0~1.6)、1.25,以期为实际工程设计提供依据。  相似文献   

9.
宽连梁剪力墙及其抗震性能研究   总被引:1,自引:0,他引:1  
提出一种通过加大连梁两侧或单侧宽度的方式,用以解决连梁受剪承载力不足的问题。基于连梁抗弯刚度等效的原则,可以有效避免连梁刚度增大,地震作用随之增大的现象。对宽连梁剪力墙结构在多遇地震作用下的层间位移角、动力特性、侧向刚度、连梁内力等进行分析,验证了宽连梁对改善连梁剪压比的作用。对普通连梁与宽连梁构件进行了弹塑性有限元分析,将其滞回性能、骨架曲线等进行比较,证明了宽连梁的变形能力和延性明显优于普通连梁。最后,通过对剪力墙结构的弹塑性时程分析,对宽连梁在高层结构中的抗震性能进行研究。分析结果表明:通过增加连梁宽度的方式能够有效提高连梁的受剪承载能力;与相同抗弯刚度的普通连梁相比,宽连梁的跨高比增大,其转动能力、延性与耗能能力明显增强;罕遇地震作用下宽连梁剪力墙结构在最大层间位移角、塑性铰分布、连梁剪力、受剪承载力等方面均显著优于普通连梁剪力墙结构。  相似文献   

10.
刘仲洋  王安安  董新元  张明普  毛会  陈杰 《建筑结构》2021,51(9):141-148,135
为解决钢梁腹板开圆孔型节点开孔处抗震承载力不足、受力变形过大等问题,提出了在钢梁腹板孔洞区域设置开孔槽钢的加强方法,并以槽钢弧形削弱位置rl、削弱深度c、槽钢厚度t、槽钢材性m为主要参数,设计了15个节点模型.运用有限元软件ANSYS模拟分析了循环荷载作用下各模型的滞回曲线、骨架曲线、刚度退化情况及耗能能力.结果 表明:在梁腹板开孔处设置槽钢后,节点的极限承载能力、初始刚度、耗能能力较未加强节点均大幅度提升;槽钢上下翼缘及腹板进行适当弧形削弱的节点较未削弱或削弱不当的节点,其后期刚度退化速率较小,滞回曲线更加饱满,总能量耗散系数最大;槽钢削弱位置rl和削弱深度c相同的节点的承载力、初始刚度、耗能性能均随着槽钢厚度£的增加而增加;槽钢的强度等级高于钢梁强度时,节点在峰值位移阶段的耗能能力显著降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号