首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The integration of photovoltaic (PV) modules on building façades and rooftops is an ideal application of solar electricity generators in the urban environment. Maximum annual performance of grid-connected PV is usually obtained with modules tilted at an angle equal to the site latitude, facing the equator. The performance of PV systems not tilted and oriented ideally can drop considerably, depending on site latitude. With grid parity – when the cost of solar electricity becomes competitive with conventional electricity – expected in many countries in the present decade, a more widespread application of PV on buildings is expected, and in this context the main goal of this paper is to demonstrate that good compromises between form and function are possible. In this work we compare the annual energy generation of a curved BIPV system installed as a car port rooftop, with an ideally-oriented and tilted, flat BIPV system installed as a building’s rooftop cover at a low-latitude site (27°S). For the one-year period analysed, the curved-shape BIPV system annual yield was 12% lower than that of the reference BIPV system, and during the summer months (November to February), the curved BIPV installation presented a higher energy yield than the latitude-tilted generator. With these results we show that a good compromise can be reached between form and function in BIPV systems.  相似文献   

2.
Solar energy technologies offer a clean, renewable and domestic energy source, and are essential components of a sustainable energy future. This paper deals with the determination of the optimum tilt angle of solar collectors for building applications. The optimum angle is calculated by searching for the values for which the total radiation on the collector surface is a maximum for a particular day or a specific period. An application of the model is done using the experimental data measured for Izmir in Turkey. The best orientation for solar collectors in Izmir is due south. For increasing the utilization efficiency of solar collectors, it is recommended that, if it is possible, the solar collector should be mounted at the monthly average tilt angle and the slope adjusted once a month.  相似文献   

3.
This paper deals with the determination of the optimum tilt angle for south-facing solar surfaces to collect the maximum solar irradiation in Yazd, Iran. In order to increase the accuracy of results, different models are used in this study. The accuracy of the models is compared in terms of the statistical indicators, RMSE and MBE. The results indicate that the Klucher model gives the best results for estimating the solar radiation reaching the solar surfaces. In comparison to the horizontal surface, on average the gain of energy during the year will be 22.82% if a solar surface is installed at yearly optimum tilt angle. For higher efficiency, it is suggested that the solar surface mounts at the seasonal tilt angle. This leads to an increase in the efficiency of the solar surface of more than 8.86% over that of a similar fixed solar surface at the annual tilt angle.  相似文献   

4.
ABSTRACT

A study is carried out for global radiation (global horizontal and global tilted radiation) and meteorological parameters (humidity and temperature) recorded for a period of one year (2011) at the National Institute of Solar Energy (NISE), Gwal Pahri (28.42°N, 77.15°E), India. Maximum global horizontal radiation of 7.22?kWh/m2 is recorded in the month of June while minimum of 0.91?kWh/m2 is observed in February. The highest value of the tilted radiation 7.27?kWh/m2 is recorded in March and the lowest value 0.90?kWh/m2 is noticed in February. The maximum temperature of 36.5°C and humidity of 87.6% are observed in the months of June and July, respectively. Conversely, minimum temperature of 6.1°C and humidity 21.7% are noticed in the months of January and April, respectively. Furthermore, meteorological parameters have been correlated with global radiation on horizontal and tilted surface. The study is vital for the performance analysis of different solar energy applications.  相似文献   

5.
An experimental investigation of an evacuated tube solar air collector coupled to a latent thermal energy store for generating hot air when no solar radiation is incident was undertaken. Acetamide was used as a phase change material (PCM). The latent thermal energy store was integrated with the manifold of the solar collector and water was used as the working fluid transferring solar gain to the air being heated. The maximum measured temperature differential between the heated air and the ambient air was 37°C and 20.2°C during conditions of incident and non-incident solar radiation, respectively. This occurred using a circular fin configuration at a flow rate of 0.018?kg?s?1. The efficiency at low (0.018?kg?s?1) air flow rates was 0.05–0.50 times less as compared to high (0.035?kg?s?1) air flow rates. This system has advantages over systems using sensible storage as it can be used after sunset due to better heat storing capacity of the PCM.  相似文献   

6.
In this paper, the Genetic Algorithm is applied to calculate the optimum slope and surface azimuth angles for solar collectors to receive maximum solar radiation. An area of Iran is selected to verify the results of this algorithm. The optimum angles and the collector input solar energies for these angles are calculated in hourly, daily, monthly, seasonally and yearly bases respectively. Then, the influence of different combinations of solar radiation components on the optimum slope angle and the energy gain is investigated. The results show that the Genetic Algorithm is a useful technique to find the optimum angles specifically when the number of independent parameters is large. The results show that the daily, monthly and yearly optimum surface azimuth angles for receiving the maximum solar energy are zero. Adjusting the collector at the daily optimum slope angle slightly increases the collector input energy compared with the case of monthly optimum slope angle so that the gain of solar energy is almost the same. The results also show that the hourly optimum surface azimuth angle is not zero and mounting the solar collector at the hourly optimum slope and azimuth angles increases the input energy significantly compared with the case of daily optimum angles. It is shown that the optimum slope angles are mostly dependent on the beam solar radiation. Furthermore, the results indicate that the optimum slope angles of solar collector and Photovoltaic panels are almost the same.  相似文献   

7.
安装地点确定的固定式光伏阵列最佳倾角要受到系统并网与否的影响.根据Hay提出的天空散射辐射各向异性模型,运用一种新的太阳能辐照量和安装倾角分析方法—Ecotect可视化分析软件,分别对并网光伏发电系统和离网光伏发电系统的光伏方阵最佳倾角进行研究.结果表明:并网发电系统光伏方阵的最佳安装倾角一般小于当地纬度.在离网发电系...  相似文献   

8.
A detailed thermal and optical numerical model is developed to simulate the performance of a small-scale parabolic collector having an evacuated receiver line with selective coating, taking into account different energy balances and interactions with the surrounding. An analytical model is developed to estimate the direct, diffuse and global solar radiation intensities on inclined surfaces. The collector performance model was validated using published experimental data. A year-round dynamic simulation for the collector performance under Beirut climatic conditions was carried out with an economic and environmental analysis. The outlet water temperature could reach a maximum of 114°C in July and 52°C in December by employing a collector of about 6 m2 aperture area with 0.01 kg/s water flow rate. The maximum daily thermal energy production is attained in July with 22.267 kWh while January exhibits the lowest thermal energy production with 6.704 kWh per day with a maximum thermal efficiency of 72%.  相似文献   

9.
This paper presents a one-dimensional transient heat transfer model, the Semi-transparent Photovoltaic module Heat Gain (SPVHG) model, for evaluating the heat gain of semi-transparent photovoltaic modules for building-integrated applications. The energy that is transmitted, absorbed and reflected in each element of the building-integrated photovoltaic (BIPV) modules such as solar cells and glass layers were considered in detail in the SPVHG model. Solar radiation model for inclined surface has been incorporated into the SPVHG model. The model is applicable to photovoltaic (PV) modules that have different orientations and inclinations. The annual total heat gain was evaluated by using the SPVHG model. The impacts of different parameters of the PV module were investigated. It was found that solar heat gain is the major component of the total heat gain. The area of solar cell in the PV module has significant effect on the total heat gain. However, the solar cell energy efficiency and the PV module's thickness have only a little influence on the total heat gain. The model was also validated by laboratory tests by using a calorimeter box apparatus and an adjustable solar simulator. The test results showed that the simulation model predicts the actual situation well.  相似文献   

10.
《Building and Environment》2002,37(6):615-623
A building-integrated photovoltaic system (BIPV) has been operated over 1 year in the Samsung Institute of Engineering & Construction Technology (SIECT) in Korea. The PV cells are mounted on the south facade and on the roof of the SIECT in the Giheung area. Special care was taken in the building design to have the PV modules shade the building in the summer, so as to reduce cooling loads, while at the same time allowing solar energy to enter the building during the heating season, and providing daylight. This paper gives a 1 year analysis of the system performance, evaluation of the system efficiency and the power output, taking into account the weather conditions. As a part of certain design compromises, that took into account, aesthetic, safety, and cost considerations, non-optimal tilt angles and occasional shading of the PV modules made the efficiency of PV system lower than the peak rating of the cells. The yearly average efficiency of the sunshade solar panel is 9.2% (average over 28.6°C surface temperature), with a minimum of 3.6% (average over 27.9°C surface temperature) in June and a maximum of 20.2% (average over 19.5°C surface temperature) in December.  相似文献   

11.
Experimental studies are carried out on the inclined solar still with baffle plates for enhancing its performance. The baffles placed in the inclined solar still act as a solar collector which helps in increasing the contact time with solar radiation thereby raising the saline water temperature. Experiments are carried out during winter and early summer climate of Chennai, India. Experimental parameters, such as ambient temperature, solar radiation, glass temperature, water temperature and distillate output are recorded. Hourly productivity is found to be higher during sunny days. The estimated production of fresh water through analytical study is 3.50?kg/m2 per day for a minimum mass flow rate of 0.0833?kg/min. The actual experimental yield is 2.793?kg/m2 per day. Also, the inlet saline water temperature affects the yield and the latter is found to be highest at 48.5°C.  相似文献   

12.
Determination of the optimum slope angle of a solar collector is highly dependent on the incident solar radiations on the collector surface. As collected instantaneous data of incident solar radiation values are averaged, more attention must be directed towards these figures by determining the uncertainties in these measurements as this allows the calculation of the optimum slope angle. These average solar radiations give a definite optimum slope angle if they come along with the lowest uncertainties. Hence, this study aimed to find the optimum slope angles of solar collectors with corresponding uncertainties. For doing this, the solar radiation data borrowed from the Iranian Meteorological Organization which were measured on a horizontal surface in a period of 20 years (1986–2005), were employed. The results showed that the uncertainties of the optimum slope angles in some cities were quite high and it indicated that in this case more attention should be paid to select the appropriate optimum slope angle. These changes were more in cold regions compared to hot and dry regions because the weather in the colder climates is typically more transient than the weather in hot and dry climates.  相似文献   

13.
Non-tracking collectors are the important technology options to harness the solar thermal energy at temperatures below 100°C. Thermal energy below this level has very wide applications in the residential and industrial sectors. Also, energy at this level can be used indirectly to produce cooling, fresh water or electricity. Flat plate and evacuated tube collectors with different design, configuration and cost were considered and their energy collection capabilities were estimated under the Kuwaiti conditions for different applications identified with the temperature. Based on the manufacturers' quotations and other economic parameters, the annual amortized cost of solar collectors were estimated. These values were used to estimate the system cost per unit of energy generation. A domestic solar water heater with an unglazed collector is the only solar system having economic viability at present. Evacuated tube collectors stand a good chance of being economically viable in future with increase in fuel prices and/or reduction in system cost.  相似文献   

14.
《Energy and Buildings》2003,35(3):239-247
The system consists of a flat-plate collector and a storage tank. Flat-plate collector is made of galvanised steel tube and aluminium plate, with MAXORB selective surface, encased in a mild steel tray with top single glass cover, bottom has been provided with glass wool insulation. It is kept facing equator and at λ+15° tilt (λ latitude of the place).The double walled storage tank is of 100 l capacity. The inner drum is made of 18 gauge galvanised steel and outer of mild steel. Space (100 mm) between them is filled with glass wool insulation.Performance and testing of solar water heater has been carried out extensively. It has been found that the heater can provide 100 l of hot water at an average temperature of 60.6 °C at 16:00 h when tap water temperature was 23.6 °C, it can retain hot water till next day morning at an average temperature of 51.6 °C. The overall efficiency of the heater is 57%.Based on performance at Jodhpur, a model has been developed by using ambient temperature and solar radiation for the prediction of its performance at various Indian stations. The predicted performance at various Indian stations revealed that hot water is required at most places for domestic use only during winter season and it can provide 100 l of hot water at an average temperature of 50–70 °C that can be retained to 40–60 °C till next day morning use.  相似文献   

15.
This paper investigates the relative effectiveness of passive-type solar-assisted space heating systems at various latitudes within the British Isles. A comparison is made of the useful solar gain of the same system linked to the same house at four different locations.

Month by month energy balances indicate that the annual useful solar contribution at the highest latitude (Lerwick, 60°N) is about 35% higher than at the lowest latitude (Kew, 53°N). The main reason for this difference is the higher heating loads in the North, particularly outside the winter months. The estimated available irradiation on south facing vertical surfaces was almost the same at all four locations. Previous work in the UK indicates that, contrary to the conclusions in this paper, more southerly latitudes were the most favourable for solar space heating. The reasons for the disparity are discussed. It is recommended that research and development of passive solar-assisted space heating systems should be most vigorously pursued in the more northerly latitudes of the British Isles, where both the potential benefit and the need are greatest.  相似文献   

16.
The thermal performance of one-ended evacuated tubes solar air collector is experimentally investigated during the winter season at NIT Kurukshetra, India [29 ° 58(latitude) North and 76 ° 53  (longitude) East]. The collector consists of 15 one-ended evacuated tubes with different lengths of directional inner aluminium tubes (inserted tubes) and a manifold channel, with air used as a working fluid. The inlet air flows through the directional inner aluminium tubes as a result of forced convection. In this experiment, evacuated tubes are used for producing hot air corresponding to different lengths of directional aluminium tubes without using any intermediate fluid. The temperature of the outlet air depends on the air flow rate, length of the directional aluminium tube and solar intensity. The maximum temperature difference between outlet air and inlet air at solar intensity 904 W/m2 was found to be 72.7 °C with a flow rate of 5.06 kg/h and length of 0.83 m.  相似文献   

17.
This paper describes the power quality analysis applied on 6?kW building-integrated photovoltaic system (BIPVS) and its economic study. A monitoring system was implemented using virtual instrumentation to measure irradiance, ambient temperature and electric variables of the photovoltaic (PV) system. The study includes a period of one year from September 2015 to August 2016 and for this the IEEE 929-2000 standard guidelines were followed. The results indicate that the power quality parameters: % THDv, frequency, nominal voltage and flicker meet the standard limits mentioned. Economic analysis of the PV system using the RETScreen? software is also presented. The results show a net present value of USD 35,157 for a period of 20 years with an annual energy saving of USD 1750. Greenhouse gas emissions avoided by the use of solar energy are 6.6 t CO2 per year.  相似文献   

18.
This paper assesses building integrated photovoltaic (BIPV) installation parameters based on the profit generated by a photovoltaic system. It takes into consideration a home building case study and it investigates its monthly energy demand based on a specific location and a typical occupancy. The capability of a photovoltaic (PV) system to generate more profit occurs when solar intensity is maximum while the electric energy price is at its highest rate. The paper traces a framework that encompasses different aspects such as energy demand, energy price, and solar intensity. This framework identifies profit alternatives according to different installation parameters. A tool that predicts a PV installation hourly electric energy production is developed. The profit generated is simulated for home buildings located in Beirut (Lebanon) and Xihua (China), both at 33.8° latitude north. The paper highlights a new approach for BIPV installations, taking into account weather conditions, energy demand, and electric energy utility rates.  相似文献   

19.
The choice of a solar radiation data source is expected to have a significant impact on the predicted performance of a concentrating solar power (CSP) system and consequently on its technical and financial feasibility. In the present study, an attempt has been made to analyse the effect of choice of various solar radiation data sources on the predicted performance of a CSP system at 13 different locations in 5 different climatic zones of India. It was observed that there is significant variation in the amount of annual electricity output obtained for various locations using different solar radiation data sources resulting in variations in levelised cost of electricity. For a 50-MW parabolic trough-based CSP plant located in Jaisalmer, the estimated value of annual electricity output varies from 63 to 124?GWh. For a CSP plant based on the central tower receiver technology, the corresponding range is from 106 to 145?GWh.  相似文献   

20.
The shading-type building-integrated photovoltaic (BIPV) claddings can act as power generators as well as external shading devices of a building, which reduce the energy consumption of the building. However, there is little information about energy impacts of different tilt angles of the shading-type BIPV claddings. By considering the typical meteorological conditions of Hong Kong, the energy performance of the shading-type BIPV claddings, in terms of the electricity generation and the cooling load reduction, is analyzed in this paper. The optimum tilt angle of PV modules for maximum electricity generation is found to be 20° instead of local latitude. Combining electricity generation and cooling load reduction, it can be concluded that the optimum tilt angles for the first type of the shading-type BIPV claddings vary from 30° to 50°, while the optimum tilt angle for the second type is 0°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号