首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
钢材高温蠕变是钢材在高温和应力作用下的塑性应变.高温蠕变会导致钢柱变形增大,耐火极限降低.为了考察高温蠕变对冷弯薄壁型钢柱抗火性能的影响程度,建立了考虑高温蠕变的抗火分析有限元模型,通过试验结果对有限元模型进行验证.利用模型研究了在不同荷载比、轴向约束刚度比、升温速率和火灾场景下,高温蠕变对冷弯薄壁型钢柱抗火性能的影响.研究表明,在有限元模型中考虑蠕变因素后,对于钢柱抗火性能的预测更为准确,更符合真实情况;在中等升温速率的火灾场景中,荷载比为0.3左右的无轴向约束钢柱因高温蠕变而引起的耐火极限的降低最为显著.  相似文献   

2.
截面温度不均匀钢柱火灾下将发生热弯曲及扭转屈曲破坏,同时对热变形的约束导致钢柱内在升温阶段产生附加压力,在降温阶段出现附加拉力。分别考虑3种约束刚度比和3种截面温度分布形式,进行了9根受约束钢柱的抗火试验,量测了受约束钢柱达到最大轴力时的温度(屈曲温度)、轴力恢复至初始荷载对应的温度(临界温度)及破坏温度,研究其在火灾升温和降温阶段的受力性能、破坏特征。试验结果表明,截面温度不均匀导致钢柱在绕截面对称轴弯曲时同时发生扭转;约束刚度比越大,钢柱的屈曲温度越低,破坏温度与屈曲温度之差越大;截面温差越大,钢柱屈曲温度和破坏温度越高。同时对试验钢柱进行了有限元分析,分析结果与试验结果基本一致,验证了所建立的有限元分析模型的正确性。  相似文献   

3.
设计了3根截面尺寸、长度均相同的Q550高强度钢柱,其中两根受到轴向约束,并对其进行了恒载作用下升温、降温的受火全过程试验,以及自然降温至室温后的轴压剩余承载力试验,对未受火的钢柱进行了常温下的极限承载力试验。研究了高温试验中钢柱的轴向位移-温度和中点侧向挠度-温度关系、极限承载力试验中钢柱的轴力-轴向位移和轴力-柱中点侧向挠度关系,并进行了有限元模拟。试验以及有限元模拟分析显示,若约束钢柱在高温过程中发生屈曲,则降温后钢柱会有明显的残余弯曲变形,并且柱中截面会产生比初始残余应力更为显著的残余应力,从而显著降低钢柱的剩余承载力和轴向刚度。试验结果与有限元分析结果吻合较好,验证了有限元分析模型的有效性。  相似文献   

4.
设计了3根截面尺寸、长度均相同的Q550高强度钢柱,其中两根受到轴向约束,并对其进行了恒载作用下升温、降温的受火全过程试验,以及自然降温至室温后的轴压剩余承载力试验,对未受火的钢柱进行了常温下的极限承载力试验。研究了高温试验中钢柱的轴向位移-温度和中点侧向挠度-温度关系、极限承载力试验中钢柱的轴力-轴向位移和轴力-柱中点侧向挠度关系,并进行了有限元模拟。试验以及有限元模拟分析显示,若约束钢柱在高温过程中发生屈曲,则降温后钢柱会有明显的残余弯曲变形,并且柱中截面会产生比初始残余应力更为显著的残余应力,从而显著降低钢柱的剩余承载力和轴向刚度。试验结果与有限元分析结果吻合较好,验证了有限元分析模型的有效性。  相似文献   

5.
高温蠕变对火灾下钢构件的内力和变形影响较大,现行《建筑钢结构防火技术规范》(GB51249—2017)中未考虑蠕变对钢柱高温承载力的影响。采用ANSYS软件分析考虑蠕变后钢柱在高温下的受力性能,并与钢柱的抗火试验进行对比,发现考虑蠕变的钢柱有限元模拟结果与试验数据吻合更好。利用验证的有限元模型进行参数分析,结果表明:考虑蠕变效应后,钢柱的高温承载力受初始缺陷(残余应力、初弯曲、初偏心)、弯曲方向、荷载比、长细比、升温速率的影响较大,受截面形式和钢材屈服强度的影响较小。给出了考虑蠕变效应后计算钢柱高温承载力的简化方法。  相似文献   

6.
为了获得高强度Q690钢柱的耐火性能,使用电炉对无防护足尺焊接H形Q690钢柱进行模拟ISO 834升温条件下耐火试验。测量得到不同荷载比下Q690钢柱温度、轴向位移、侧向位移与受火时间的关系,基于试验数据得到钢柱的临界温度和耐火极限。采用ABAQUS有限元软件建立钢柱耐火性能分析模型,考虑钢材高温蠕变和焊接残余应力的影响,模拟得到了钢柱的受火响应,其与试验结果吻合良好。利用验证的有限元模型分析了荷载比、长细比和升温速率对钢柱受力性能的影响。研究表明,无防护的Q690钢柱在受火20 min左右发生破坏,破坏模式为整体失稳破坏;荷载比对临界温度影响较大,长细比和升温速率影响较小; Q690钢柱的临界温度比GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EN1993-1-2的计算结果低60℃左右。最后提出了高强Q690钢柱抗火设计的简化方法。  相似文献   

7.
为了获得高强度Q690钢柱的耐火性能,使用电炉对无防护足尺焊接H形Q690钢柱进行模拟ISO 834升温条件下耐火试验。测量得到不同荷载比下Q690钢柱温度、轴向位移、侧向位移与受火时间的关系,基于试验数据得到钢柱的临界温度和耐火极限。采用ABAQUS有限元软件建立钢柱耐火性能分析模型,考虑钢材高温蠕变和焊接残余应力的影响,模拟得到了钢柱的受火响应,其与试验结果吻合良好。利用验证的有限元模型分析了荷载比、长细比和升温速率对钢柱受力性能的影响。研究表明,无防护的Q690钢柱在受火20min左右发生破坏,破坏模式为整体失稳破坏;荷载比对临界温度影响较大,长细比和升温速率影响较小;Q690钢柱的临界温度比GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EN 1993-1-2的计算结果低60℃左右。最后提出了高强Q690钢柱抗火设计的简化方法。  相似文献   

8.
为了解不同受火条件下型钢混凝土柱截面温度场,同时考察受火方式、火灾荷载比、荷载偏心率、约束刚度比等参数对型钢混凝土柱抗火性能的影响,进行了14个包括四面、三面、相对两面、相邻两面、单面受火条件下轴向约束型钢混凝土柱的抗火性能试验。试验结果表明:受火面数量、受火方位对 型钢混凝土柱截面温度分布有显著影响,升温时间相同时,四面受火、三面受火、两面受火、单面受火试件截面相同位置处所经历的最高温度依此降低;距试件表面距离相同时,型钢翼缘外侧受火面温度比型钢腹板外侧受火面温度略高。受火方式、火灾荷载比、荷载偏心率、约束刚度比对升降温全过程下型钢混凝土柱轴向变形和轴力发展有显著影响,试件受热膨胀变形和降温压缩变形随受火面数的增多而增大;轴向膨胀变形随火灾荷载比的增大而减小,随荷载偏心率的增大而增大;荷载比越大,试件由轴向拉伸状态转为轴向压缩状态的时间越短,压缩程度越高。定义试验实测轴力与初始施加轴力的比值为轴力变化系数,四面受火、三面受火、两面受火、单面受火时,试件升降温后期的轴力变化系数依此递减,轴力变化系数峰值随荷载偏心率和轴向约束刚度比的增大而增大,随火灾荷载比的增大而减小。  相似文献   

9.
采用多尺度建模方法建立了考虑钢材高温蠕变的三层三跨钢梁-钢管混凝土柱平面框架火灾全过程热-力耦合数值模型,研究不同火灾工况下平面框架经历常温加载、恒载升温、降温和火灾后等不同受火阶段的力学性能。在与已有试验对比验证的基础上,分析了框架经历升温和降温后受火钢梁跨中挠度和受火柱顶轴向变形与升降温时间关系,计算了火灾后框架底层柱底水平荷载P-框架顶层水平位移Δ关系曲线。研究结果表明:钢材的高温蠕变是钢材在热力耦合作用下应变的一部分,计算过程中需要考虑其影响;钢梁在升温过程中由于高温膨胀对框架柱产生外推作用,而进入降温阶段后钢梁产生明显的收缩变形;框架底层三跨同时受火时钢梁跨中挠曲变形最大,受火初期柱顶轴向压缩变形小于膨胀变形;受火后框架水平承载力和初始刚度均随受火区域的增大呈下降趋势。  相似文献   

10.
冷弯薄壁型钢四肢拼合截面柱是一种常用的拼合柱,主要用于多层冷弯薄壁型钢结构建筑结构中承受集中荷载。对8根拼合箱形截面柱进行了高温下整体稳定试验研究,主要考虑了不同的温度纵向分布模式和螺钉布置方式对其抗火性能的影响。试验中测得了炉温、柱温、轴向荷载、轴向位移和侧向位移等,并且得到了钢柱在高温破坏后的残余变形。根据试验结果可以判断钢柱在高温下首先发生整体屈曲,再发生局部屈曲,最后在二者相互作用下失去承载能力。试验结果表明:当螺钉间距小于300 mm时,构件截面的协同变形能力良好,单肢构件间未出现分离的现象,且随着螺钉间距减小,钢柱失效的临界温度有较大的提升;在拼合柱端部设置抗剪螺钉群对其抗火性能的提升不明显;当构件由全长受火变为上半部分受火时,构件侧移最大点位置会由中部区域向上移动靠近柱端,且达到耐火极限时,钢柱失效的临界温度升高。基于ABAQUS建立了有限元模型,模型中考虑了材料与几何非线性以及高温下螺钉的抗剪刚度。有限元模拟结果与试验结果对比发现,该有限元模型不仅可以很好地模拟该类构件高温下的变形,也可准确地预测其耐火极限与临界温度。  相似文献   

11.
应用ANSYS软件计算了钢柱在标准的升温模式下的温度场,分析了在三面受火作用下钢柱截面的温度变化情况。然后,利用ANSYS的耦合分析,将温度场导入结构分析中,进一步分析研究了在火灾下的钢柱截面温度分布对钢柱附加挠度的影响以及钢柱扭转变形发展规律,推导了由于温度效应引起的钢柱附加挠度的计算公式,为钢结构的抗火设计提供一定的参考价值。  相似文献   

12.
当火灾中钢框架柱不均匀受火时,会在截面和高度方向产生温度梯度。现行规范给出了火灾中钢构件升温的计算公式,但这些公式均是基于温度沿构件高度和截面均匀分布的假设。采用有限元方法研究了火灾中两相邻面受火钢柱的截面温度场,火灾场景采用ISO834标准升温曲线,钢柱采用非膨胀型防火涂料保护。对于所研究的两相邻面受火钢柱,沿截面宽度和高度方向均存在温度梯度。基于参数分析结果,对欧洲规范EN 1993-1-2中钢构件升温计算公式进行了修正,来计算两相邻面受火钢柱截面各部分的升温曲线。  相似文献   

13.
冷弯薄壁型钢四肢拼合截面柱是一种常用的拼合柱,主要用于多层冷弯薄壁型钢结构建筑结构中承受集中荷载。对8根拼合箱形截面柱进行了高温下整体稳定试验研究,主要考虑了不同的温度纵向分布模式和螺钉布置方式对其抗火性能的影响。试验中测得了炉温、柱温、轴向荷载、轴向位移和侧向位移等,并且得到了钢柱在高温破坏后的残余变形。根据试验结果可以判断钢柱在高温下首先发生整体屈曲,再发生局部屈曲,最后在二者相互作用下失去承载能力。试验结果表明:当螺钉间距小于300 mm时,构件截面的协同变形能力良好,单肢构件间未出现分离的现象,且随着螺钉间距减小,钢柱失效的临界温度有较大的提升;在拼合柱端部设置抗剪螺钉群对其抗火性能的提升不明显;当构件由全长受火变为上半部分受火时,构件侧移最大点位置会由中部区域向上移动靠近柱端,且达到耐火极限时,钢柱失效的临界温度升高。基于ABAQUS建立了有限元模型,模型中考虑了材料与几何非线性以及高温下螺钉的抗剪刚度。有限元模拟结果与试验结果对比发现,该有限元模型不仅可以很好地模拟该类构件高温下的变形,也可准确地预测其耐火极限与临界温度。  相似文献   

14.
《钢结构》2012,(5):76-84
火灾下蠕变对轴向约束钢柱屈曲的影响 目前,大多采用考虑蠕变的Harmathy蠕变模型进行耐火性分析。Harmathy蠕变模型仅能预测恒定应力下一定精度的蠕变,不适用于应力变化的情况。轴向约束钢柱遇到火灾时,火灾过程中应力将随着时间和温度的变化而迅速变化。该文研究了火灾下蠕变对轴向受压钢柱屈曲性能的影响。使用ANSYS软件中能够预测任何时间、应力或温度下钢材蠕变应力的蠕变模型来预测蠕变应力。分别对考虑和不考虑蠕变的情况进行数值模拟,并对两种情况下的屈曲温度和轴向变形结果进行对比分析。快火和慢火工况都考虑在内。研究结果显示,慢火工况下考虑蠕变的轴向约束钢柱屈曲温度高于不考虑蠕变的屈曲温度,快火工况下考虑蠕变的轴向约束钢柱屈曲温度可能高于也可能低于不考虑蠕变的屈曲温度。  相似文献   

15.
《钢结构》2012,(5):76
目前,大多采用考虑蠕变的Harmathy蠕变模型进行耐火性分析。Harmathy蠕变模型仅能预测恒定应力下一定精度的蠕变,不适用于应力变化的情况。轴向约束钢柱遇到火灾时,火灾过程中应力将随着时间和温度的变化而迅速变化。该文研究了火灾下蠕变对轴向受压钢柱屈曲性能的影响。使用ANSYS软件中能够预测任何时间、应力或温度下钢材蠕变应力的蠕变模型来预测蠕变应力。分别对考虑和不考虑蠕变的情况进行数值模拟,并对两种情况下的屈曲温度和轴向变形结果进行对比分析。快火和慢火工况都考虑在内。研究结果显示,慢火工况下考虑蠕变的轴向约束钢柱屈曲温度高于不考虑蠕变的屈曲温度,快火工况下考虑蠕变的轴向约束钢柱屈曲温度可能高于也可能低于不考虑蠕变的屈曲温度。  相似文献   

16.
火灾高温对结构钢的材料性能有显著的影响,尤其是对钢结构材料的力学性能影响更加明显,因此而导致结构整体承载能力的显著变化。利用有限元软件ANSYS建立一榀两层两跨钢-混凝土组合梁和钢柱构成的组合钢框架有限元模型,对其在火灾高温下的温度分布和应力响应进行分析。结果表明,受火梁、柱截面温度非均匀分布,非线性变化;梁柱节点是组合钢框架的薄弱环节;受火组合梁内全过程为压应力,未达到屈服应力。  相似文献   

17.
采用有限元数值分析方法,研究高温与爆炸荷载联合作用下轻钢结构柱的动力响应与破坏模式规律,在分析中考虑不同火灾温度与不同爆炸冲击荷载峰值,以及在相同爆炸荷载峰值下不同冲击荷载峰值出现时间等参数的影响。通过有限元软件ANSYS/LS-DYNA建立实体轻钢柱模型,根据欧洲规范3建议的升温曲线及不同温度条件下材料性能参数,确定钢材的弹性模量、剪切模量、屈服强度等参数。选定在特定温度点对钢柱施加爆炸荷载,分析时考虑应变率效应。数值分析结果表明:相同爆炸荷载作用下随着火灾过程中温度的升高,轻钢柱跨中变形增大,轻钢柱的损伤更明显;相同爆炸荷载峰值作用下爆炸荷载峰值出现时间越小,轻钢柱跨中变形越大;在高温下发生爆炸轻钢柱的变形要比常温的明显,由于高温使轻钢柱的材料性能急剧降低,使高温和爆炸荷载作用下的轻钢柱破坏模式明显不同于常温下的破坏模式。  相似文献   

18.
梁拥军  赵军 《山西建筑》2009,35(30):72-73
应用ANSYS软件计算了钢柱在标准的升温模式下的温度场,分析了在三面受火作用下钢柱截面的温度变化情况,然后利用ANSYS的耦合分析,将温度场导入结构分析中,进一步分析研究了在火灾下的钢柱截面温度分布对钢柱耐火临界温度的影响。  相似文献   

19.
当钢柱三面受火时,沿截面方向会产生温度不均匀分布的现象。而现行规范假设各种受火情况下钢柱沿截面方向的温度分布均匀,并以此为前提提出了钢构件温度的计算公式。研究了受厚型防火涂料保护的钢柱在三面受火条件下截面温度的分布规律,利用有限元软件ABAQUS进行参数分析,参数分析的变量主要为截面形状系数,通过改变截面高度和腹板厚实现对截面形状系数的影响。通过对EC3中采用的受保护钢构件受火升温公式进行修正,建立了截面不同部位升温的计算方法,并给出沿截面不同温度分布曲线的计算公式。  相似文献   

20.
轴向约束钢柱的抗火性能分析   总被引:1,自引:0,他引:1  
应用ANSYS软件计算了钢柱在标准的升温模式下的温度场,然后利用ANSYS的耦合分析,将温度场导入结构分析中,分析了火灾下两端简支的轴心受压钢柱随温度升高时的力学性能并与理论计算结果进行了比较。对柱的轴向约束刚度以及荷载比对轴心受压柱受力性能的影响作了进一步的分析,阐述了轴向约束钢柱在火灾下的变形及轴向附加荷载的一些规律,可为钢柱的抗火设计提供一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号