首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为研究BFRP-钢板-混凝土组合双连梁的受力性能和破坏机理,完成了1个普通钢筋混凝土单连梁、1个普通钢筋混凝土双连梁、1个内置钢板的钢筋混凝土双连梁、1个外包BFRP布的钢板-混凝土组合双连梁的低周往复加载试验,研究了不同连梁形式和外包BFRP布对其抗震性能的影响,分析了各连梁的破坏形态、破坏特征、承载能力、变形能力和耗能能力等,并利用数字图像相关(DIC)测试技术分析了BFRP布应变随位移和时间变化的分布规律。结果表明:内置钢板和包裹BFRP布后,双连梁的延性、耗能和承载力均有显著提高;内置钢板显著提高了普通钢筋混凝土双连梁的承载能力和耗能能力,包裹BFRP布有效地提高了钢板-混凝土组合双连梁的持荷能力,BFRP布能较好地抑制混凝土裂缝的开展以及延缓混凝土的破坏速度。DIC测试技术能够较好地测定连梁外包BFRP布的变形以及应变变化,BFRP布在靠近梁墙交界处所受的力较大。  相似文献   

2.
为研究新型BFRP-钢板-混凝土组合双连梁的受力性能和破坏机理,完成了1个普通钢筋混凝土单连梁、1个普通钢筋混凝土双连梁、1个内置钢板的钢筋混凝土双连梁、1个外包BFRP布的钢板-混凝土组合双连梁的低周往复加载试验,研究了不同连梁型式和外包BFRP布对其抗震性能的影响,分析了各试件的破坏形态、破坏特征、承载能力、变形能力和耗能能力等,并利用数字图像相关(DIC)测试技术分析了BFRP布应变随位移和时间变化的分布规律。结果表明:内置钢板和包裹BFRP布后的双连梁其延性、耗能和承载力均有显著的提升;钢板的加入显著提高了普通钢筋混凝土双连梁的承载能力和耗能能力,包裹BFRP布有效地提升了钢板-混凝土组合双连梁的持荷能力,BFRP布能较好地抑制混凝土裂缝的开展以及延缓混凝土的破坏速度。  相似文献   

3.
为改善传统高层建筑剪力墙连梁的抗震性能,设计并制作3个内嵌钢板混凝土组合(SPC)连梁和1个交叉斜筋钢筋混凝土连梁试件并进行低周往复加载试验。试件变化参数包括连梁纵筋配筋率和配板形式。对比分析各连梁的破坏过程、滞回性能、耗能能力、强刚度退化、承载力、延性以及变形能力等。结果表明,连梁试件发生弯剪和弯曲两种破坏模式;增大连梁纵筋配筋率在提高承载力的同时降低了试件的延性变形;在配板率相同情况下,钢板形式由单钢板改变为拉结双层钢板,连梁受力性能相似,当单层钢板厚度较大时可采用双层钢板设计方案;钢板的设置可有效提高试件的承载力与延性,较好改善滞回曲线的捏拢效应,同时参与连梁端部塑性铰区的抗弯,提供较大的抵抗弯矩,钢板的受压作用也可提高塑性铰的转动能力。与交叉配筋钢筋混凝土连梁相比,利用钢板良好的承载力和延性变形能力,内嵌钢板混凝土组合连梁具有稳定的滞回性能和耗能能力且施工简单,其综合抗震性能优于传统配筋混凝土连梁。  相似文献   

4.
为研究地震作用下考虑RC楼板影响的钢板-混凝土组合(PRC)连梁受力性能和破坏机理,进行了4个带RC楼板的钢板-混凝土组合连梁和1个不带楼板的钢板-混凝土组合连梁的低周反复荷载试验,研究跨高比、钢板配板率以及楼板型式等因素对PRC连梁抗震性能的影响,分析带RC楼板连梁的破坏过程、破坏形态、承载能力、变形能力和耗能能力等,并考察楼板的损伤情况.结果 表明:随着跨高比的增大,带RC楼板连梁的承载力明显降低,但延性更好;随着配板率的降低,带RC楼板连梁的承载力随之降低;钢板的受压波形屈曲变形主要发生在上下梁墙交界处,钢板和楼板的设置能显著增大连梁的受剪承载力及耗能能力;RC楼板设置半通缝会明显延缓连梁的开裂,半通缝的设置并不对连梁的承载力造成很大影响,但可以减小楼板在加载前期的损伤.  相似文献   

5.
为研究地震作用下考虑RC楼板影响的钢板-混凝土组合(PRC)连梁受力性能和破坏机理,进行了4个带RC楼板的钢板-混凝土组合连梁和1个不带楼板的钢板-混凝土组合连梁的低周反复荷载试验,研究跨高比、钢板配板率以及楼板型式等因素对PRC连梁抗震性能的影响,分析带RC楼板连梁的破坏过程、破坏形态、承载能力、变形能力和耗能能力等,并考察楼板的损伤情况.结果 表明:随着跨高比的增大,带RC楼板连梁的承载力明显降低,但延性更好;随着配板率的降低,带RC楼板连梁的承载力随之降低;钢板的受压波形屈曲变形主要发生在上下梁墙交界处,钢板和楼板的设置能显著增大连梁的受剪承载力及耗能能力;RC楼板设置半通缝会明显延缓连梁的开裂,半通缝的设置并不对连梁的承载力造成很大影响,但可以减小楼板在加载前期的损伤.  相似文献   

6.
完成了6个钢板-混凝土组合连梁拟静力加载试验,研究了钢板-混凝土组合连梁的破坏特点、抗剪承载力、变形能力、滞回曲线、骨架曲线、延性、耗能特性、刚度退化以及适宜采用的构造形式等。试验结果表明:不论是改进焊接箍筋钢板-混凝土连梁还是梳齿钢板连梁都具有较好的抗震性能;较小跨高比、较大刚度的试件则表现出较高承载能力,而较大跨高比、较小刚度的试件表现出了较好的延性。在加载过程的后期,小跨高比连梁明显比大跨高比连梁刚度退化慢,而耗能效率增加得快,有较强的耗能储备能力。采用改进焊接箍筋钢板连梁以及梳齿钢板连梁两种方式均可行,方便墙肢主筋的布置与安装。  相似文献   

7.
在地震作用下,内置钢板的钢板-混凝土组合连梁能够起到较好的耗能能力。为定量分析含钢率对钢板-混凝土组合连梁抗震性能的影响,完成了2个缩尺比例为1∶3的钢板连梁-剪力墙试件的低周往复水平拟静力加载试验,采用位移控制加载。2个试件以钢板厚度为变化参数,分别为10mm和12mm,跨高比、锚固长度等均不作变化。试验结果表明,含钢率较高的连梁表现出更为理想的变形能力,并拥有更高的延性。内置钢板的钢筋混凝土连梁,在试件达到屈服之后,能够在梁端形成塑性铰,进入承载力强化阶段,滞回曲线较为饱满,可以有效耗散地震能量。  相似文献   

8.
提出一种内部型钢由花纹钢板制作的花纹型钢混凝土组合柱。通过设计2个花纹高度不同的新型试件和1个普通型钢混凝土试件的低周反复荷载试验,研究试件的破坏形态、滞回骨架特性、刚度退化、内置型钢的应变变化规律等,分析型钢表面的花纹高度对型钢混凝土组合结构抗震性能的影响。试验结果表明,相较于普通型钢混凝土柱,花纹型钢混凝土柱的承载能力、延性、变形和耗能能力等抗震性能均得到有效提高,且型钢表面的花纹凸起高度越大,提高效果越好。  相似文献   

9.
依据汶川地震中双连梁剪力墙和深连梁剪力墙结构的实际震害对比,建立采用两种不同连梁结构形式的双肢剪力墙试件的有限元模型,运用有限元分析软件进行非线性计算,对比分析双连梁与深连梁剪力墙模型的破坏形态、极限承载力、滞回性能、延性及耗能能力。研究结果表明:与发生剪切型破坏的深连梁相比,双连梁屈服后剪力墙整体结构仍具有一定的抗侧变形能力,双连梁可以承受较大的塑性转角,成为剪力墙结构良好的耗能构件;双连梁剪力墙结构的位移延性及耗能能力均优于深连梁剪力墙结构,但其极限承载力和抗侧刚度较深连梁剪力墙结构低。  相似文献   

10.
为了改善小跨高比连梁的抗震性能,采用纤维增强混凝土(FRC)替代连梁中的普通混凝土,考虑跨高比、箍筋间距和FRC强度等因素的影响,设计了7个小跨高比FRC连梁试件和1个普通混凝土连梁对比试件。通过拟静力试验,观察连梁试件在低周反复荷载作用下的破坏过程和形态,研究其滞回特性、变形能力、耗能能力及刚度退化等。结果表明:8个小跨高比连梁试件发生了剪切破坏或弯曲剪切破坏;跨高比和配筋相同的FRC连梁的受剪承载力和位移延性系数比普通混凝土连梁分别提高了9.71%和24.31%,达到破坏荷载时的累积耗能是普通混凝土连梁的1.5倍,采用FRC可提高连梁的承载能力、延性和耗能能力;随着跨高比增大和箍筋数量的增加,连梁的变形和耗能能力提高。基于试验结果和受剪机制分析,提出了小跨高比连梁的受剪承载力计算式,其计算值与试验值吻合较好。  相似文献   

11.
为了改善小跨高比连梁的抗震性能,采用纤维增强混凝土(FRC)替代连梁中的普通混凝土,考虑跨高比、箍筋间距和FRC强度等因素的影响,设计了7个小跨高比FRC连梁试件和1个普通混凝土连梁对比试件。通过拟静力试验,观察连梁试件在低周反复荷载作用下的破坏过程和形态,研究其滞回特性、变形能力、耗能能力及刚度退化等。结果表明:8个小跨高比连梁试件发生了剪切破坏或弯曲剪切破坏;跨高比和配筋相同的FRC连梁的受剪承载力和位移延性系数比普通混凝土连梁分别提高了9.71%和24.31%,达到破坏荷载时的累积耗能是普通混凝土连梁的1.5倍,采用FRC可提高连梁的承载能力、延性和耗能能力;随着跨高比增大和箍筋数量的增加,连梁的变形和耗能能力提高。基于试验结果和受剪机制分析,提出了小跨高比连梁的受剪承载力计算式,其计算值与试验值吻合较好。  相似文献   

12.
为了研究不同筋材增强工程水泥基复合材料(ECC)受弯构件的力学性能,设计并制作6个几何尺寸相同的试验梁,包括形状记忆合金(SMA)增强ECC(SMA-ECC)梁、GFRP增强ECC(GFRP-ECC)梁、钢绞线增强ECC(SS-ECC)梁、SMA/GFRP增强ECC(SMA/GFRP-ECC)梁、钢筋增强ECC(R-ECC)梁和普通钢筋混凝土(RC)对比梁。通过低周单向循环加载试验,研究相同加载条件下相同配筋率的各试验梁的破坏过程、承载能力、耗能能力、位移延性、残余变形和自复位性能,考察SMA/GFRP-ECC梁的力学性能。结果表明:与普通钢筋混凝土梁相比,复合配筋增强ECC梁在加载过程中呈现出明显的多缝开裂特征,具有更好的延性;与采用其他筋材的复合配筋增强ECC梁相比,SMA/GFRP可以使梁兼具大承载力、高耗能以及自复位能力;SMA/GFRP-ECC梁具有较高承载力、延性以及损伤自修复、位移自复位能力。  相似文献   

13.
火电厂主厂房型钢混凝土混合结构中存在由于错层、变梁变柱截面引起的异型中节点,选取5个代表性节点进行1∶5缩尺拟静力试验,研究该类节点的滞回性能、耗能能力、延性、刚度退化以及承载能力。研究结果表明:受强梁弱柱特性的影响,4个型钢混凝土异型中节点主要发生不利于抗震的柱端塑性铰破坏,而钢筋混凝土异型中节点由于梁柱刚度比较大主要发生核心区剪切破坏;大小梁错层高度对型钢混凝土异型中节点的承载力、延性性能与刚度特性均有一定的影响,但规律并不明显;型钢混凝土柱-钢筋混凝土梁异型中节点的耗能能力强于钢筋混凝土异型中节点,但受破坏模式的影响,其承载能力、延性与刚度等均低于钢筋混凝土异型中节点;相比采用钢筋混凝土梁的型钢混凝土异型中节点,采用型钢混凝土梁的型钢混凝土异型中节点的开裂荷载高,初始刚度较大,但承载力、延性与耗能能力并未得到明显提高。  相似文献   

14.
通过7个小跨高比钢板 混凝土组合连梁试件的拟静力试验,研究了连梁跨高比、钢板配钢率以及楼板等因素对其抗震性能的影响,分析了连梁的破坏过程、破坏形态、承载能力、变形能力和耗能能力等。结果表明:相比于不考虑楼板小跨高比PRC连梁,考虑楼板小跨高比PRC连梁增大了连梁的开裂位移,显著提高了连梁的受剪承载力和耗能能力,考虑楼板连梁试件相比于不考虑楼板连梁试件受剪承载力提高了18.03%,破坏时对应的累积耗能是后者的1.66倍;连梁钢板的破坏包括梁墙交界区钢板的开裂和钢板的局部屈曲,钢板的局部屈曲可分为钢板边缘发生的受压局部屈曲和钢腹板的剪切局部屈曲;小跨高比PRC连梁试件的剪压比实测值为0.20~0.30,相应的剪压比设计值为0.39~0.59,内嵌钢板显著提高了小跨高比连梁的剪压比限值。  相似文献   

15.
玄武岩纤维布加固钢筋混凝土梁受力性能的研究   总被引:3,自引:0,他引:3  
通过采用两点对称集中加载的方法,对4根玄武岩纤维布加固的钢筋混凝土梁和1根未加固梁的正截面承载力的对比试验,观测并分析了试验梁发生破坏的全过程、应变分布情况、承载力和延性,并分析了玄武岩纤维布粘贴层数、粘贴锚固方式对加固效果的影响.试验证明玄武岩纤维布加固钢筋混凝土梁符合加固设计规范要求.  相似文献   

16.
为满足小跨高比连梁承载力、延性及耗能的要求,同时避免由于钢筋密集导致的施工困难,采用纤维增强混凝土(FRC)代替普通混凝土作为连梁基体,完成了4个对角斜筋小跨高比FRC连梁试件与1个混凝土连梁对比试件的拟静力试验,分析其破坏过程、破坏形态、承载能力、变形能力和耗能能力等。分析结果表明:FRC可提高连梁的承载力、延性和耗能能力;对角斜筋FRC连梁在主斜裂缝出现前,已具有很高的受剪承载力和变形能力以及良好的抗损伤能力,能够满足强震下的承载力和变形需求,强震后无需修复或稍加修复即可继续使用。  相似文献   

17.
工程结构服役期间经常由于使用功能改变或使用荷载增加而需要对结构进行加固改造。为研究经碳纤维布粘贴加固后的玄武岩纤维增强塑料(BFRP)筋-工程用水泥基复合材料(ECC)-混凝土组合梁的受弯性能,对3组共12根不同ECC高度替换率(0、0.29和0.58)的BFRP筋-ECC-混凝土组合梁底分别粘贴1、2和3层碳纤维布的加固构件及未加固构件进行静力受弯性能试验。研究碳纤维布粘贴层数和ECC高度替换率对组合梁受弯承载力和破坏形态的影响。试验结果表明:采用受拉性能优异的ECC替代受拉区部分混凝土形成的ECC-混凝土组合梁不仅可提高构件承载力,还可有效改善构件抵抗开裂和变形的能力;组合梁底粘贴3层碳纤维布,裂缝宽度可降至未加固试件的10%,受弯承载力提高20%,挠度降低50%。借鉴钢筋混凝土理论,基于合理的基本假定和简化的材料本构模型,提出粘贴碳纤维布加固的组合梁受弯承载力计算式,并给出碳纤维布强度折减系数,理论预测值与试验实测值吻合良好。  相似文献   

18.
玄武岩纤维布加固木梁抗弯性能的试验研究与有限元分析   总被引:2,自引:0,他引:2  
玄武岩纤维布是一种性能优异的新型复合材料。通过对12根矩形截面木梁的静力试验,进行玄武岩纤维布(BFRP)加固木梁抗弯性能的试验研究,分析对比梁与加固梁的承载力、挠度等结构性能指标。试验结果表明:在木梁受拉区粘贴玄武岩纤维布是提高木梁抗弯性能的有效方法。并应用ANSYS软件对BFRP布加固木梁的抗弯性能试验的全过程进行了数值模拟,得到加固木梁在竖向荷载作用下的荷载-位移曲线,应力-应变云图等。通过数值计算结果与试验结果的对比,验证了应用ANSYS程序对FRP加固木梁进行数值模拟的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号