首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulations of L-regimes of small size divertor tokamak plasma edge have been performed with the B2SOLPS5.0 2D fluid transport code for wide range parameters. A conclusion has been made that, radial electric field in the vicinity and inside separatrix is near to neoclassical electric field value. The poloidal E × B drifts and compensating parallel fluxes in the scrape off layer are large in the L-regime with ITB due to steeper gradients while the qualitative pattern of the flows is similar to that of the L-mode.  相似文献   

2.
We model the internal transport barrier “ITB” in edge plasma of small size divertor tokamak with B2SOLPS0.5.2D fluid transport code. The simulation results demonstrated the following: (1) we control the internal transport barrier by altering the edge particle transport through changes the edge toroidal rotation which agree with the result of Burrell et al. (Edge Pedestal control in quiescent H-mode discharges in DIII-D using co-plus counter-neutral beam injection, Nucl Fusion, 49, 085024 (9pp) in 2009). (2) The radial electric field has neoclassical nature near separatrix with discharge by co-injection NBI. (3) The toroidal plasma viscosity has strong influence on the toroidal velocity.  相似文献   

3.
The simulation of the radial electric field shear, which is responsible for L-H transition by means B2SOLPS0.5.2D transport code, gives the dependence of this shear on plasma parameters. Also, as result of uni-directional neutral beam heating, internal transport barrier is formed and ion radial heat flux q ir starts to decrease. Furthermore, the dependence of radial electric field shear on ion temperature gradient ITG has also investigated.  相似文献   

4.
The simulation of the radial electric field shear, which is responsible for L-H transition by means B2SOLPS0.5.2D transport code, gives the dependence of this shear on plasma parameters. Also, as result of uni-directional neutral beam heating, internal transport barrier is formed and ion radial heat flux q ir starts to decrease. Furthermore, the dependence of radial electric field shear on ion temperature gradient ITG has also investigated.  相似文献   

5.
The formation of electron internal transport barrier (EITB) during using counter-neutral beam injection (NBI) heating in the edge plasma of small size divertor tokamak can be simulated by using fluid transport code B2SOLPS0.5.2D. The results of simulations give us the following: (1) Plasma heating with counter-neutral beam injection leads to, strong, parabola type electron internal transport barrier (EITB) was formed in the edge plasma of small size divertor tokamak. (2) In case of plasma heating by counter-neutral beam injection, the radial electric field shear (E r –gradient) was increased, while electron transport coefficients were reduced in conjunction with the formation of electron internal transport barrier (EITB). (3) The plasma heating by counter-neutral beam injection play significantly role in redistribution of parallel (toroidal) velocity in edge plasma of small size divertor tokamak.  相似文献   

6.
This paper reports simulation of L–H transition by fluid transport code B2SOLPS0.5.2D at low ion plasma density on neutral beam injection (NBI) in the edge plasma of small size divertor tokamak. The simulation provides the following results: (1) the transition is possible at plasma density 2 × 1019 m?3 with NBI at temperature heating Theating 3.62 keV. (2) The simulation predicts the generation of large negative radial electric field E r, which is thought to help L–H transition during NBI, is suggested in the edge plasma of small size divertor tokamak. (3) The toroidal current density in the edge plasma of small size divertor tokamak is plasma density and direction of NBI dependence. (4) Parallel flux transport by anomalous viscosity (turbulent) through separatrix leads to the variation of toroidal current density.  相似文献   

7.
The radial electric field in the edge plasma of small size divertor tokamak can be simulated by B2SOLPS0.5.2D fluid transport code. The simulation provides the follow results: (1) Switching on and off the part of the parallel plasma viscosity driven by parallel ion diamagnetic heat flux (Bekheit in J. Fusion Energ 27(4), 338–345, 2008; Schneider et al. in Nucl. Fusion 41:387, 2001) and Counter-NBI plasma heating change profile of radial electric field significantly. (2) Switching on and off the parallel plasma viscosity driven by parallel ion diamagnetic heat flux leads to the radial electric field is toroidal magnetic field dependence (3) For the case of counter-NBI plasma heating, the switching on and off the current driven by part parallel plasma viscosity depends on the ion diamagnetic heat flux leads to the ion poloidal velocity is toroidal magnetic field BT dependence. (4) The profile of the radial electric field in edge plasma of small size divertor tokamak is consistent with poloidal rotation velocity.  相似文献   

8.
The B2SOLPS0.5.2D code can completely derive measured target asymmetries in edge plasma of small size divertor tokamak (SSDT). SOL flow measurements by the code have been performed in L-mode plasma at various poloidal locations in small size divertor tokamak. The main results of simulations suggest that, the following results: (1) SOLPS0.5.2D simulation predicts Jr(\textdia) ×BT J_{r}^{{({\text{dia}})}} \times B_{T} Jr(\textdia) J_{r}^{{({\text{dia}})}} is diamagnetic current, B T is normal toroidal magnetic field) force due to the presence of large up-down pressure asymmetries is one of the reasons responsible for observed target asymmetries. (2) The shear of plasma toroidal rotation which is contributed for ITB formation and transition to improved confinement regime is formed near separatrix. The role of centrifugal effect in target asymmetries and SOL flow has been investigated.  相似文献   

9.
The edge plasma transport code SOLPS5.0 is used for modelling edge plasmas in the experimental shots on JT-60U tokamak and the pro les of the radial particle and heat transport coecients D, e and i along the outer midplane have been obtained by tting the code results to the experimental measurement in L-mode shot 39090 and H-mode shots 37851, 37856. The experimental measurement used for tting includes the pro les of electron temperature and density along the outer midplane, the pumping speed, the total particle ux from the core boundary to the computational region and the ux density of neutrals near the outer wall. The modelling and tting results show within the pedestal region in H-mode shots 37851 and 37856 the radial particle transport coecient D has larger drop, but, for L-mode shot 39090, the obvious drop of D and e has not been found.  相似文献   

10.
Core plasma rotation of both L-mode and H-mode discharges with ion cyclotron range of frequency(ICRF) minority heating(MH) scheme was measured with a tangential X-ray imaging crystal spectrometer on EAST(Experimental Advanced Superconducting Tokamak).Cocurrent central impurity toroidal rotation change was observed in ICRF-heated L-and H-mode plasmas.Rotation increment as high as 30 km/s was generated at ~1.7 MW ICRF power.Scaling results showed similar trend as the Rice scaling but with significant scattering,especially in L-mode plasmas.We varied the plasma current,toroidal field and magnetic configuration individually to study their effect on L-mode plasma rotation,while keeping the other major plasma parameters and heating unchanged during the scanning.It was found that larger plasma current could induce plasma rotation more efficiently.A scan of the toroidal magnetic field indicated that the largest rotation was obtained for on-axis ICRF heating.A comparison between lower-single-null(LSN)and double-null(DN) configurations showed that LSN discharges rendered a larger rotation change for the same power input and plasma parameters.  相似文献   

11.
A new method for describing the nature of radial electric field and its relation with toroidal rotation in edge plasma of small size divertor tokamak is proposed in this work. The expression of radial electric field in the edge plasma of small size divertor tokamak can be divided into two parts. The first part E r (0) is related to electrostatic potential of plasma in edge plasma of this tokamak. The second part E r (1) is related to contribution of toroidal rotation of radial current in edge plasma of this tokamak. The results of this work provide the following: (1) A new one-dimensional ordinary differential equation for toroidal velocity is obtained. The one-dimensional ordinary differential equation suggest new tool to explaining tokamak experiments involving measurements of plasma rotation and radial electric field. (2) Also the results of this work shows that, the main contribution to the radial electric field inside separatrix (plasma core) gives the term E r (1).  相似文献   

12.
A Hamiltonian guiding centre drift orbit code based on a symplectic integration algorithm, which enables the efficient calculation of particle trajectories and diffusion coefficients, is applied to fast alpha particle motion in magnetically perturbed tokamak plasmas. In particular, fast ion drift motion is examined in the presence of a stationary, low mode-number MHD magnetic perturbation in a toroidally rippled tokamak with circular flux surface. The main focus of our study is to investigate the dependence of the radial diffusion coefficient of energetic ions on their energy, on the perturbation strength and the localization of the perturbation. As expected, the resonance between bounce motion and toroidal field ripples plays a significant role in this context. For an ensemble of fast ions uniformly distributed in toroidal angle but with a given poloidal starting position their radial transport coefficient takes on higher values in the neighbourhood of resonance speeds and can exhibit there local minima, i.e. it shows an M-shaped speed dependence around resonances for sufficiently strong ripple perturbations. Expectedly, the addition of a modelled low-mode number neoclassical tearing mode perturbation will modify the pure ripple resonance structure of the radial diffusion coefficient. Depending on the strength and localization of the MHD mode it can cause enhancement or degradation of the radial ripple diffusion coefficient.  相似文献   

13.
The radial electric field of small size divertor tokamak in the vicinity of separtrix is simulated by using B2-SOLPS5.0 2D code, in which the most complete system of transport equations (Rozhansky et al., Nucl Fusion, 41:4, 2001) is solved including all the important perpendicular current and E × B drifts. Simulations demonstrated the following results: (a) It is shown that in the vicinity of the separatrix, the radial potential profile is determined by perpendicular currents (b) since, due to the pressure asymmetry, radial diamagnetic current integrated over the closed flux surface is not automatically zero, additional radial currents balance the diamagnetic current and make the average net current zero. (c) On the closed flux surfaces far from separetrix, where the pressure is almost constant, the calculated parallel currents (toroidal current) agree with Pfirsch–Schlueter currents.  相似文献   

14.
The Plasma Science and Innovation Center (PSI-Center) is benchmarking and refining the NIMROD code for simulations of field-reversed configurations (FRCs). The NIMROD code can resolve highly anisotropic heat conduction and viscosity (Sovinec et al., JCP 195:355, 2004). This combined with its ability to include two-fluid effects, allows us to capture more detailed physics than previous calculations. Recent modifications to the radial boundary conditions capture most of the effects of multiple discrete coils found in many FRC experiments. When the tangential electric field on the end boundaries (open field lines) is set to zero and the Hall term is included in the calculation, the open field-line plasma spins up due to end-shorting effects, which in turn couples to the main FRC plasma through shear viscosity. The spin-up rate is found to be sensitive to the open field-line plasma profile. We are also investigating recent observations (Guo et al., Phys. Rev. Lett. 95:175001, 2005] that imply that a small toroidal field could help stabilize the n = 2 rotational instability. We find that a combination of a relatively weak toroidal magnetic field and the inclusion of the Hall term in the calculation can lead to a change in the character of the mode and a dramatic reduction to its growth rate.  相似文献   

15.
《Fusion Engineering and Design》2014,89(7-8):1019-1023
The generation and diffusion of runaway electrons (REs) during major disruptions in the HL-2A tokamak has been studied numerically. The diffusion caused by the magnetic perturbation is especially addressed. The simulation results show that the strong magnetic perturbation (δB/B  1.0 × 10−3) can cause a significant loss of REs due to the radial diffusion and restrain the RE avalanche effectively. The results also indicate that the REs are generated initially in the plasma core during disruptions, and that the toroidal electric field does not exhibit a centrally hollow phenomenon. In addition, it is found that the toroidal effects have little impact on the generation of RE and the evolution of toroidal electric field.  相似文献   

16.
The effect of toroidal rotation on heat flux transport in the edge plasma of small size divertor was simulated by B2SOLP0.5.2D transport code. The main results of simulation shows that, the following: (1) the radial heat flux is strongly influenced by toroidal rotation. (2) The amplification of conduction part of radial heat flux imposes nonresilient profile of ion temperature, under which the effect of toroidal rotation on ion temperature profile is strong. (3) The ion distribution and its gradients are lower for counter-injection neutral beam than for co-injection neutral beam. (4) Reversal of toroidal rotation during using neutral beam injection result in reverses of radial electric field and E × B drift velocity. (5) The toroidal rotation strong influence on the ion temperature scale length of the ion temperature gradient (ITG). (6) Switch on and off all drifts leads to higher change in the ion density distribution in edge plasma of small size divertor tokamak when the unbalance neutral beam injection are considered (7) the comparison between radial heat flux at different momentum input shows that, the radial ion heat flux with larger ion temperature scale length in the case of co-injection neutral beam is larger than the ion heat flux with smaller ion temperature scale length in the case of counter-injection neutral beam.  相似文献   

17.
The heat flows out from the tokamak core region are collected on the divertor plates and external wall. Control of heat flux exhaust in the SOL and divertor plates regions is one of the important issues in tokamak physics. There are important phenomena affecting heat flows were simulated. The simulation is based on the B2SOLPS5.0 2D multifluid code. It is demonstrated that, the following results: (1) The simulation shows that, the operation of small size divertor tokamak, the divertor plate with/without impurities influence on profiles of electron, ion temperatures, and heat loads significantly. (2) Under normal direction of parallel (toroidal) magnetic field and different values of edge plasma density, strong “SOL” heat flow exists directed towards the LFS (outer) plate. (3) The simulation results show that, the increasing of the plasma density strong influence on the ion and electron poloidal heat fluxes profile significantly. The ion and electron polodial heat flux increase by factor “~8” and “2.4” times. (4) The simulation results show that the in–out asymmetry of heat fluxes was reversed when switching on/off E × B drifts in the edge plasma of this tokamak. (5) The simulation results show correlation between the in–out asymmetry divertor heat fluxes and E × B drift velocity. (6) The observed heat loads asymmetry between HFS and LFS plates can be explained with the radial electric field in SOL. (7) Also the simulation results performed result in, the in–out asymmetry strong influence on the characteristic length of ion poloidal heat flux.  相似文献   

18.
The edge plasma code package SOLPS5.0 is employed to simulate the divertor power footprint widths of the experimental advanced superconducting tokamak(EAST)L-mode and ELM-free H-mode plasmas.The divertor power footprint widths,which consist of the scrape-off layer(SOL)widthλ_q and heat spreading 5,are important physical parameters for edge plasmas.In this work,a plasma current scan is implemented in the simulation to obtain the dependence of the divertor power footprint width on the plasma current I_p.Strong inverse scaling of the SOL width with I_p has been achieved for both L-mode and H-mode plasmas in the forms ofλ_(q,L-mode)=4.98×I_p~(-0.68)andλ_(q,H-mode)=1.86×I_p~(-1.08).Similar trends have also been demonstrated in the study of heat spreading with S_(L-mode)=1.95×I_p~(-0.542)and S_(H-mode)=0.756×I_p~(-0.872).In addition,studies on divertor peak heat load and the magnetic flux expansion factor show that both of them are proportional to plasma current.The simulation work here can act as a way to explore the power footprint widths of future tokamak fusion devices such as ITER and the China Fusion Engineering Test Reactor(CFETR).  相似文献   

19.
The symplectic Hamiltonian guiding centre code which enables efficient calculation of charged particle trajectories and diffusion coefficients has been applied to fast ion motion in magnetically perturbed tokamak plasmas. Particularly fusion born alpha particle drift motion, in constant of motion space, is examined in the presence of low mode-number neoclassical tearing mode (NTM) perturbation in a toroidally rippled tokamak. The main focus of this study is to investigate the dependence of the radial diffusion coefficient of energetic ions on the perturbation strength and on the localization of the perturbation. The resonance between bounce motion and toroidal field ripples plays a significant role in this context. The presence of NTMs results in substantial enhancement of radial diffusion coefficient for passing particles. Depending on the strength and localization of the NTM it can cause enhancement or degradation of the radial ripple diffusion coefficient of trapped particles.  相似文献   

20.
Using a reciprocating Langmuir probe system, the boundary plasma behaviors were investigated before and after lithium/silicon coating. Accompanying the effective reduction of impurity radiation, strong shears of radial electric field and poloidal velocity came into being and the turbulence suppression and de-correlation were observed in the edge region of coated wall plasma. All these led to the reduction of the edge transport and improvement of plasma confinement. In the central line averaged density scanning experiments, an enhanced shear of the radial electric field was observed in the edge plasma with the increase of the density, which may account for the enhancement of the transport barrier and the improvement of particle confinement.The results suggest a close link between wall conditions and boundary plasma. In addition to the relationship, (~Te)/Te ~(~n)n/ne and θ_(~T)e(~n)e ~π, had been observed in the plasma edge region, which indicates the important role of the ionization and radiation in turbulence driving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号