首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用波长为744 nm、聚焦功率密度为6×1016W/cm2的超短激光分别与两种不同厚度的铝薄膜靶相互作用,根据鞘层加速机制在靶后法线方向测量质子束角分布和能谱随靶厚度的变化,研究了预脉冲对质子加速的影响。随着薄膜靶厚度的降低,质子计数迅速增加,但当薄膜靶厚度太薄时,激光预脉冲形成的预等离子体影响了薄膜靶的面型,导致质子横向发散角迅速增加,而薄膜靶面型的破坏减少了激光与等离子体相互作用过程中的电子回流,从而降低了超热电子的产生和鞘层加速电场的维持,影响了质子的加速能谱。因此,超短脉冲激光与薄膜靶相互作用加速产生质子束,应尽量降低预脉冲,不能采用太薄的薄膜靶,以避免预等离子体影响薄膜靶的面型,导致质子的能量降低、发散角增大。  相似文献   

2.
在中国原子能科学研究院的放电泵浦的紫外KrF超短脉冲激光放大装置上,开展了紫外超短脉冲激光与铜薄膜靶相互作用加速产生质子束的实验研究。紫外超短脉冲激光输出能量为30 mJ、波长为248 nm、脉冲宽度为500 fs,采用离轴抛物面镜聚焦获得激光聚焦功率密度为1.2×1017 W/cm2。激光以45°入射5 μm厚的铜薄膜靶,质子最大能量超过300 keV。紫外超短脉冲激光的高对比度和高吸收效率是紫外激光加速的优点。  相似文献   

3.
实验研究了超短脉冲激光辐照固体靶产生的超热电子温度 ,所用方法是测量超热电子在固体中韧致辐射产生的硬X射线 ( >30keV)能量连续谱。中等强度 ( 1 0 16W /cm2 )、无预脉冲、红外超短脉冲( 74 4nm ,1 30fs,6mJ)、P极化激光 4 5°照射 5mm铜靶 ,产生了能量为 4 0 0keV的X射线信号 ,利用Maxwellian分布拟合能谱得到的超热电子温度为 85keV ,产生高能电子的主导吸收机制为真空加热。  相似文献   

4.
超短超强激光与薄膜铝靶作用加速产生质子的实验研究   总被引:1,自引:1,他引:0  
实验研究了功率密度6×1016W/cm2、脉宽120fs的激光与5μm铝靶的相互作用,观测到了高能质子的产生。设计加工了用于测量质子能谱的Thomson质谱仪,用于快质子的测量。测得其能谱和产生的最高质子能量为180keV,同时测得质子发散全角为38°。  相似文献   

5.
超短脉冲激光与固体等离子体相互作用实验研究   总被引:2,自引:1,他引:1  
实验研究了超短脉冲激光(744nm/120fs/12mJ)与固体(Cu)等离子体相互作用产生超热电子的能谱与角分布,利用电子磁谱仪与成像板(IP)探测器测量能谱,采用IP在入射平面内测量角分布。在无预脉冲、P极化激光45°斜入射下,采用Maxwellian分布拟合得到的超热电子温度为46keV,超热电子主要沿靶法线方向发射。产生超热电子的主导机制为真空加热,等离子体的电荷分离势约为70keV。  相似文献   

6.
本实验使用高纯锗探测器,运用单光子法,对超短脉冲激光与固体铜靶相互作用产生的硬X射线能谱进行测量。实验结果表明:在激光强度I≈8×1016W/cm2的P极化光以45°入射角照射5 mm铜靶、探测立体角为4.5×10-6的实验条件下,产生的硬X射线的能量主要集中在低于100keV能量范围内,超热电子温度分别为(7.4±0.7)keV和(19.5±1.6)keV。  相似文献   

7.
8.
9.
采用飞秒激光与金属薄膜靶相互作用,测量了前向(靶背方向)发射的快电子和快质子.实验显示:快电子主要沿靶背法线附近发射且有较大的发散角,这与PIC模拟的结果一致;快质子发射方向与快电子大体一致,但其发散角远小于快电子.原因在于电子产生和加速在靶前(激光辐照面),在输运中受过密等离子体和靶的散射;而质子来源于靶背的含H污染物,并由靶法线鞘加速机制(TNSA)加速,未受散射地到达探测器.快电子和快质子能谱给出的快电子有效温度和质子最大能量较好地满足定标关系Emax=αTh,其中α≈2.  相似文献   

10.
实验研究了两种波长超短脉冲激光(744 nm/120 fs/12 mJ、248 nm/420 fs/35 mJ)与固体(Cu)等离子体的相互作用,利用电子磁谱仪与成像板探测器测量了激光入射平面内超热电子的能谱与角分布.在无预脉冲、P极化激光45°斜入射的条件下,采用Maxwellian分布拟合得到的超热电子温度分别为46和19.4 keV,超热电子主要沿靶法线方向发射.产生超热电子的主导机制为真空加热,实验验证了真空吸收定标率Th≈4.11×10-2(Iλ2)1/2.54(keV).等离子体的电荷分离势分别为70和45 keV.  相似文献   

11.
介绍了功率密度4×1016W/cm2,脉宽120 fs情况下超短超强激光分别与5和2.1 μm薄膜铝靶作用加速质子的实验。采用CR-39固体径迹探测器和Thomson谱仪结合测量得到质子能谱,并对实验结果进行分析。测得的5 μm铝靶的质子最大能量约为140 keV,2.1 μm铝靶的质子最大能量约为170 keV。2.1 μm铝靶的质子产额较5 μm铝靶的高1个量级。  相似文献   

12.
为了准确评估激光装置靶室内、外的周围剂量当量分布情况,进一步验证剂量评估模型的合理性,利用蒙特卡罗程序FLUKA对激光靶室进行了全建模,基于现有电子源项理论模型以及XG-Ⅲ激光装置典型实验条件对靶室内外剂量情况进行了计算分析。为了更准确地测量光子周围剂量当量,需要对光子剂量测量组件进行设计,对不同能量区间电子对测量元件的总剂量贡献进行了模拟分析,在此基础上针对0~15 MeV区间电子的屏蔽进行了优化设计,最后对光子剂量测量组件的效果进行了模拟计算,并进行了设计优化。模拟结果表明靶室内、外电子周围剂量当量均高于光子剂量当量。激光靶室主观察窗内、外的电子与光子剂量水平相差约1个量级。相较于无屏蔽情况下,优化后的测量组件使电子剂量水平下降了99.7%,光子剂量水平仅衰减了30.9%,电子与光子的剂量比值约为0.12,总光子剂量中有5%是高能电子在PMMA中发生轫致辐射所贡献。模拟结果表明:经过对测量结果的合理修正,该组件可适用于强激光装置中靶室内的光子剂量测量。  相似文献   

13.
实验研究了超短脉冲激光与原子团簇相互作用过程中各种实验条件对团簇吸收激光能量的影响。实验发现高Z稀有气体(Xe)以及较高的气体压力都更易形成大团簇,对激光能量的吸收较高。还研究了激光波长(744与248nm)、激光强度以及偏振态等对吸收效率的影响。结果表明,短波长激光更易被团簇吸收;在一定强度范围内(10^15~10^16W/cm^2),随激光强度的增强,团簇对激光的吸收效率也增高;P极化光比S极化光更易被团簇吸收。  相似文献   

14.
研究了靶材料及靶厚度对超热电子产生机制及空间行为的影响。研究结果表明,在激光以45°角入射的条件下,靶材料对超热电子产生机制无明显影响,但靶材厚度对激光吸收效率有很大影响,而超热电子的空间行为并不随靶厚度变化,主要集中在靶前后表面的法线方向发射。  相似文献   

15.
本文通过实验验证CR-39临界角是其不能探测到100 keV以下质子能谱的原因。并据此改进探测方案,利用CR-39和Thomson谱仪测得超强激光与5 μm厚Al靶作用产生的100 keV以下的质子能谱。探讨了利用单粒子模拟法处理Thomson谱仪的数据,该方法规避了谱仪中磁场边缘场对测量的影响,提高了谱仪测量精度。  相似文献   

16.
固体径迹探测器广泛应用于科学和技术方面,CR39是其中使用很频繁的一种塑料探测器。由于电子和伽马光子在CR39中的碰撞截面很小,远小于中子、质子或其他离子的碰撞截面,因此可认为固体径迹探测器CR39对电子和光子不响应,而仅对中子、质子或其他离子响应,这给CR39在实验中的应用带来很大优点。在超短超强脉冲激光与等离子体相互作用的实验中,会产生大量的强伽马射线、热电子或超热电子,而在有些实验如超短超强脉冲激光加速产生高能质子束的研究中,需单独对质子束的通量、角分布、能谱等参数进行详尽的测量。  相似文献   

17.
利用15 TW激光脉冲,系统研究了基于电离化注入的激光尾波场加速。实验中,研究了等离子体密度、相互作用位置、激光脉宽以及激光能量对电子束的电荷量、发散角、指向性、能量以及产生概率的影响。将约400 mJ、25 fs的激光脉冲聚焦在喷嘴前沿,等离子体密度约9×1018 cm-3时,电子的产生概率高达100%,获得了水平(竖直)发散角(6.5±0.5) mrad((5.3±0.3) mrad)、水平(竖直)指向稳定性±1.2 mrad (±0.7 mrad)、峰值能量(135±8) MeV和电荷量(13.5±2.0) pC(>50 MeV)的稳定电子束,为其应用奠定了基础。  相似文献   

18.
为了研究强激光与固体靶相互作用产生的电离辐射危害,本文在星光Ⅲ300TW强激光装置上开展了一系列激光打靶实验。实验使用的激光功率密度为5×10~(18)~4×10~(19)W/cm~2,激光脉冲能量为60~153J,靶为直径1mm、厚度1mm的Ta圆柱,本文分别对X射线剂量、X射线能谱和超热电子能谱进行了测量。实验结果表明,测量到的单发最大X射线剂量约为16.8mSv,靠近激光传播方向(0°),距靶50cm处;激光0°方向的X射线剂量随激光功率密度的增加而显著增加,激光90°方向的X射线剂量随激光功率密度的变化相对较小;测量到的X射线能谱可大致用含有两个X射线温度的指数分布函数描述,其中0°方向测量到的X射线温度为0.4~1.15 MeV,90°方向测量到的X射线温度为0.25~0.54 MeV;实测超热电子温度与Wilks定标率符合较好。  相似文献   

19.
超短超强激光与固体靶相互作用可产生显著的X射线剂量,其辐射防护问题是辐射防护和激光等离子体物理的学科交叉问题,对超短超强激光装置安全运行至关重要。为验证清华大学所提出的剂量评估公式,对超短超强激光与固体靶作用所产生的X射线剂量开展了实验研究。设计了用于屏蔽靶室内超热电子和散射光子的屏蔽结构,仅测量超热电子和固体靶作用所产生的X射线剂量,并开展蒙特卡罗模拟评估其屏蔽效果。基于星光 Ⅲ激光装置对不同激光功率密度(7×1018~4×1019 W/cm2)下不同角度上的X射线剂量开展了实验测量,并与不同的剂量评估公式结果进行了比较分析,实验中还对不同剂量测量探测器的响应进行了比较。计算结果表明,所设计的屏蔽结构能很好地屏蔽超热电子和散射光子。实验结果表明,清华大学所提出的剂量评估公式较文献公式能更好地与实验结果吻合。随激光功率密度的增加,前向的X射线剂量较侧向增加得更快。  相似文献   

20.
脉冲X射线能谱测量,对于强激光装置中的物理诊断以及辐射防护具有重要意义。脉冲X射线具有脉冲时间短、注量大、能谱范围宽等特点,常规脉冲测量技术往往受到探测器死时间、堆积效应的限制而无法适用。目前多个国家都建立了强激光装置的研究平台,并开展X射线能谱测量相关研究。本文首先介绍了基于吸收法原理且适用于中低能脉冲X射线的测量方法:Ross Pair法和衰减法。然后针对这两种方法从5个方面(探测器结构、滤片材料、探测介质选择、散射控制以及解谱方法)综述了脉冲X射线吸收谱仪的研究进展,并分析了各自的适用性。目前激光装置中脉冲X射线能谱的测量还面临着能量分辨率不理想、结果不确定度无法量化和被动式能谱测量操作不便等问题。随着激光装置的不断升级,脉冲X射线注量以及打靶频次将不断增加,对探测器的耐辐照性能以及响应速度提出了更高的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号