首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.  相似文献   

2.
For the problem of two-phase natural circulation flow in gap clearance between reactor vessel lower head and insulator in the condition of severe accident, one-dimensional steady-state natural flow analysis code was written by utilizing FORTRAN. Based on the code, the effects of different correlations for friction coefficient and the number of nodes of heating section on mass flow rate of two-phase natural circulation flow were studied. And the results are compared with that of Chinese REPEC experiment and simulation using RELAP5 program so as to verify the rationality and correctness of the code. Based on the experiment data, simulation results and the model, friction coefficient and the void fraction condition under ERVC correlation are obtained by fitting. The results calculated by the model using fitting friction coefficient correlation agree well with ULPU V test data. Furthermore, the effect of power, pressure, inlet area, gap diameter, flooding level and inlet water subcooling on mass flow rate and void fraction of two-phase natural circulation were studied utilizing this code.  相似文献   

3.
Natural circulation is one of the most important thermal-hydraulic phenomena that makes the fluid flow along a closed loop without any external driving force. With this merit, it is adopted by the passive heat removal system to bring the residual heat out of the core at accidents, and by the primary system of some new conceptual reactors instead of pumps to drive the coolant in the loop at operation. To investigate the reactor natural circulation and verify system thermal-hydraulic codes, it is a way to construct an integrated effect test facility and perform experiments on it with the scaling criteria. With one-dimensional assumption, the natural circulation system was simplified as the heat source, heat sink and pipes, and described by two groups of equations independently for the single-phase and two-phase flow conditions. Based on these equations, a set of non-dimensional equations were derived and the criteria were obtained both applicable for single-phase and two-phase natural circulation. According to these criteria, the practical application was analyzed and discussed. In the paper, the property similarity was strongly suggested in most cases. Though equal height simulation was widely used in the past, the reduced height simulation is a good way to reproduce three-dimensional (3D) phenomena that are of concern in the investigation. The CHF simulation is not suggested. The mass of metal and its distribution is of concern instead of heat transfer at transient simulation.  相似文献   

4.
根据一维自然循环比例分析理论模型推导的试验装置与实际电站热工水力特性的相似准则,对整体性能试验装置主要参数的确定方法进行了深入讨论。结果表明:采用小尺度、等压力、同工质的实验装置模拟实际系统自然循环现象更为准确实际,单相和两相自然循环比例准则可同时满足,不存在复杂比例变化带来的失真,不利因素是试验成本偏高。同工质非等物性(不等压)模拟能够降低试验成本,但比例参数不能满足从单相自然循环到两相自然循环的平滑过渡。如保持功率连续,其速度比和特征时间比会有所差异。  相似文献   

5.
1 Introduction With respect to the inherent safety of nuclear re- actors, application of passive systems/components including natural circulation phenomena as the main mechanism is intended to simplify the safety-related systems and to improve their reliability, to reduce the effect of human errors and equipment failures, and to provide more time to enable the operators to prevent or mitigate serious accidents. Natural circulation is the main mode of heat removal for removing decay heat from t…  相似文献   

6.
A freon-113 flow visualization loop for simulating the hot-leg U-bend natural circulation flow has been constructed and hot-leg two-phase flow behavior has been studied experimentally. From the present experiments, an understanding of the basic mechanisms of the two-phase natural circulation and flow termination were obtained. The power input, loop friction and the liquid level in the simulated steam generator played key roles in the overall flow behavior. Experimental results show that the flow behavior strongly depends on phase changes and coupling between hydrodynamic and heat transfer phenomena. Non-equilibrium phase-change phenomena such as flashing create unstable hydrodynamic conditions which lead to cyclic or oscillatory flow behaviors.  相似文献   

7.
一维自然循环比例分析的理论模型   总被引:2,自引:2,他引:0  
整体性能试验研究是验证先进非能动压水堆核电站堆芯冷却系统设计有效性的核心技术,一回路系统两相自然循环热工水力特性比例分析是确定整体性能试验装置尺度的主要理论依据。以一维漂移流模型为基础,对整个一回路两相自然循环系统控制方程积分,并求得稳态解,由此获得了系统的流动条件。应用初始流动条件与边界条件,对两相自然循环系统控制方程直接无量纲化,最终得到了整体性能试验装置与实际非能动电站热工水力特性的相似准则。  相似文献   

8.
The gas lift pump concept based on the bubbling of an inert gas into the primary reactor coolant to enhance natural circulation is currently considered in a number of PbBi-cooled reactor concepts. Thus, the analysis of available void fraction data and the development of two-phase heavy liquid metal/gas flow calculational models have become an important issue in the study of advanced nuclear reactor systems. In the absence of the detailed two-phase flow information needed to develop a flow regime map and the associated interfacial relations, drift-flux models have often been used in the thermal-hydraulic analysis of nuclear and other systems. Accordingly, we consider, in the current paper, the analysis of five sets of experimental data with different geometries, working fluids, flow rates and void fraction ranges, with a view to obtaining a best fit to the data in the form of a drift-flux model. The results of the analysis show that, for systems with flowing fluid, it is possible to represent the heavy liquid metal void fraction data in the form of a drift-flux correlation with a residual error of as low as 0.016, thus offering an improvement over existing void correlations.  相似文献   

9.
The drift-flux model is one of the imperative concepts used to consider the effects of phase coupling on two-phase flow dynamics. Several drift-flux models are available that apply to rod bundle geometries and some of these are implemented in several nuclear safety analysis codes. However, these models are not validated by well-designed prototypic full bundle test data, and therefore, the scalability of these models has not necessarily been verified. The Nuclear Power Engineering Corporation (NUPEC) conducted void fraction measurement tests in Japan with prototypic 8 × 8 BWR (boiling water reactor) rod bundles under prototypic temperature and pressure conditions. Based on these NUPEC data, a new drift-flux model applicable to predicting the void fraction in a rod bundle geometry has been developed. The newly developed drift-flux model is compared with the other existing data such as the two-phase flow test facility (TPTF) data taken at the Japan Atomic Energy Research Institute (JAERI) [currently, Japan Atomic Energy Agency (JAEA)] and low pressure adiabatic 8 × 8 bundle test data taken at Purdue University in the United States. The results of these comparisons show good agreement between the test data and the predictions. The effects of power distribution, spacer grids, and the bundle geometry on the newly developed drift-flux model have been discussed using the NUPEC data.  相似文献   

10.
Scaling criteria for a natural circulation loop under single-phase and two-phase flow conditions are derived. Based on these criteria, practical applications for designing a scaled-down model are considered. Particular emphasis is placed on scaling a test model at reduced pressure levels compared to a prototype and on fluid-to-fluid scaling. The large number of similarity groups which are to be matched between model and prototype makes the design of a scale model a challenging task. The present study demonstrates a new approach to this classical problem using two-phase flow scaling parameters. It indicates that a real time scaling is not a practical solution and a scaled-down model should have an accelerated (shortened) time scale. An important result is the proposed new scaling methodology for simulating pressure transients. It is obtained by considering the changes of the fluid property groups which appear within the two-phase similarity parameters and the single-phase to two-phase flow transition parameters.Sample calculations are performed for modeling two-phase flow transients of a high-pressure water system by a low-pressure water system or a Freon system. It is shown that modeling is possible for both cases for simulating pressure transients. However, simulation of phase change transitions is not possible by a reduced pressure water system without distortion in either power or time.  相似文献   

11.
Thermal-hydraulic characteristic investigation on passive residual heat removal system (PRHRS) of Chinese advanced PWR was conducted to provide input data for PRHRS design and to demonstrate the feasibility of unique design features. A total of 237 sets of test data at steady state have been obtained and the main influence factors on the two-phase natural circulation flow rate and residual heat removal capability were identified. On the basis of theory analysis, a correlation of two-phase natural circulation was obtained, and relative errors of 95% test data were less than ±16%. There is a considerable effect of the system status parameters on the threshold of height between heat source and heat sink, and its correlation of two-phase natural circulation system has been obtained. The steady characteristic research shows that PRHRS has the capability of removing the core decay power through natural circulation.  相似文献   

12.
Natural circulation plays an important role in long-term cooling of pressurized water reactors (PWRs) under small break loss-of-coolant accidents. Recently, natural circulation experiments have been conducted at the Institute of Nuclear Energy Research integral system test (IIST) facility, which is used to simulate the Westinghouse three-loop Maanshan PWR. A numerical simulation is presented to investigate the natural circulation phenomena of the IIST facility with the RELAP5/MOD3 code. The calculated results are in good agreement with the experimental data of the single-phase natural circulation both quantitatively and qualitatively. The influences of power level and system pressure on natural circulation can also be predicted by the current model. Based on the two-phase natural circulation data, the calculated flow rate history is similar to that obtained from the experiment.  相似文献   

13.
采用BETHSY自然循环实验数据对CATHARE2 V1.5qR6进行了评价.结果表明CATHRE2V1.5程序能较好地预测试验装置单相自然循环条件下的热工水力现象,对单相自然循环向两相自然循环的转变以及两相自然循环向回流冷凝运行方式的转变发生时的一回路水装量预测也比较准确,但对于两相自然循环及回流冷凝运行方式下系统的一些主要热工水力参数预测欠佳.评价结果表明,与许多国际性大型热工水力分析程序一样,CATHARE2V1.5qR6程序对剧烈两相流动的预测能力仍有待改进和完善.  相似文献   

14.
Natural circulation characteristics of an integral type reactor during the operation of a passive residual heat removal system (PRHRS) following a safety related event has been experimentally investigated by using the VISTA facility. A PRHRS actuation trip signal is generated by a high power trip signal following a steam flow increasing event. The experimental results show that the single-phase coolant flows steadily in the primary loop by a natural convection process and that it effectively removes the decay heat from the core through a steam generator during the PRHRS operation. The heat transfers through the PRHRS heat exchanger and the emergency cooldown tank (ECT) are sufficient enough to enable a two-phase natural circulation of the coolant in the PRHRS loop.  相似文献   

15.
低干度自然循环流量漂移的特征曲线图谱分析   总被引:1,自引:0,他引:1  
在5MW低温核供热堆全模拟试验回路(HRTL-5)上,实验观察到了低干度自然循环条件下的流量漂移现象.通过一个考虑了加热段欠热沸腾、上升段冷凝、闪蒸等物理过程的两相流动数学模型,编制了相应的计算程序,获得了自然循环特征曲线图谱及其运行曲线,确定了自然循环分岔图和静态不稳定边界图,进而提出了通过自然循环特征曲线图谱研究流量漂移的分析方法.分析表明:特征曲线图谱方法是研究自然循环静态不稳定的有效手段.增大系统压力、减小热流密度、增加入口单相阻力、减小出口两相阻力有利于避免自然循环流量漂移的发生.  相似文献   

16.
Experiments were conducted to investigate two-phase flow instabilities in a boiling natural circulation loop with a chimney at high pressure. The SIRIUS-N facility was designed to have non-dimensional values which are nearly equal to those of a typical natural circulation BWR. The observed oscillations are found to be density wave oscillations, since the void fractions in the chimney inlet and exit are out of phase. They belong to the Type-I category, since they occur at low flow qualities, according to the Fukuda—Kobori's classification. Moreover, the oscillation period correlates well with the passing time of bubbles in the chimney section regardless of the system pressure, the heat flux, and the inlet subcooling. Two distinct phenomena are found in relation between the oscillation period and liquid passing time in the chimney, indicating that the driving mechanisms of the instabilities are different between low and high pressures. Stability maps were obtained in reference to the inlet subcooling and the heat flux at the system pressures of 1, 2, 4, and 7.2 MPa. The flow became stable below a certain heat flux regardless of the channel inlet subcooling. The stable region enlarges with increasing system pressure. Thus, the stability margin becomes larger in a startup process of a reactor by pressurizing the reactor sufficiently before withdrawing the control rods. The obtained stability map demonstrates that the nominal operating condition of the ESBWR has a significant stability margin to the unstable region.  相似文献   

17.
Accurate evaluation of gas-liquid two-phase flow behavior within rod bundle geometry is crucial for the safety assessment of the nuclear power plants. In safety assessment codes, two-phase flow in rod bundle geometry has been treated as a one-dimensional flow. In order to obtain the reliable one-dimensional two-fluid model, it is essential to utilize proper area-averaged models for governing equations and constitutive relations. The area-averaged interfacial drag term utilized to evaluate two-phase interfacial drag force is typically given by the drift-flux parameters which consider the velocity profile in two-phase flow fields. However, in a rigorous sense, the covariance due to void fraction profile is ignored in traditional formulations. In this paper, the rigorous formulation of one-dimensional momentum equation was derived by taking consideration of void fraction covariance, and a new set of one-dimensional momentum equation and constitutive relations for interfacial drag was proposed. The newly obtained set of formulations was embedded into TRAC-BF1 code and numerical simulation was performed to compare against the traditional model without covariance. It was found that effect of covariance was almost negligible for steady-state adiabatic conditions, but for high void fraction condition with added perturbation, the traditional model underpredicted the damping ratio at around 8%.  相似文献   

18.
Lead–bismuth two-phase flow in a cylindrical vessel and annulus was experimentally investigated by varying the surface wettability of the vessel wall. The test section used in this study was a cylindrical stainless vessel with/without inner sleeve to change the hydraulic diameter. Volume-averaged void fraction was measured by varying the surface wettability of the test section, which was enhanced by using a soldering flux. Measured void fraction was compared with existing two-phase flow correlations and with one-dimensional theoretical simulations assuming one-dimensional drift-flux model. From experimental results, measured distribution parameters of the lead–bismuth two-phase flow are much larger than that of ordinary two-phase flow regardless of the surface wettability. In the present work, the one-dimensional analysis was carried out for the cylindrical vessel to reproduce the distribution parameter. From the simulation results, predicted value for the cylindrical vessel showed good agreement with experimental results. However, in annulus, the distribution parameters in annulus were underestimated by the present model. It was suggested that, in case of annulus, steeper void fraction profile might be formed near the inner surface for poor wettability condition.  相似文献   

19.
一维两流体模型中,界面阻力是决定相间耦合程度的关键参数,其计算方法目前有漂移流模型法和阻力系数法。本研究利用子通道程序,基于圆管空气-水两相实验数据,对这2种计算方法进行了评估,结果表明一维两流体模型中漂移流模型法的预测能力要优于阻力系数法。同时评估了两相流动中分布效应对界面阻力计算的影响,结果表明在低空泡份额区分布效应影响较小,而高空泡份额区其影响明显。   相似文献   

20.
对冷却流体在球床模块堆内燃料颗粒填充区域中的流动和传热过程进行了研究.数值模拟突然停堆后燃料颗粒区在温差作用下的自然对流过程,分析了瑞利数Ra对燃料填充区域内流场、温度场和局部努塞尔数Nu以及壁面摩擦阻力系数的影响.计算结果表明:当球床模块堆突然停堆时燃料填充区域可形成加热壁面流体上升流动、冷却壁面下降流动的自然循环流动;随着Ra数增大,回流中心向上移动;沿轴向壁面局部Nusselt数和摩擦阻力系数存在极值,并且极值点随Ra数增大而向上移动;与氮气相比,氦气作为冷却介质停堆后具有更均匀的堆芯轴向温度分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号