首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust collisions are considered as collision terms in the kinetic equation.The kinetic equation is simplified by employing the local approximation and nonlocal approach under the same discharge conditions,and the corresponding simplified kinetic equations are known as local and nonlocal kinetic equations respectively.Then the electron energy distribution function(EEDF)is obtained by numerically solving the local and nonlocal kinetic equations and the dust charging equations simultaneously.Based on the obtained EEDFs,the effective electron temperature,electron mobility,electron diffusion coefficient and ionization rate coefficient are calculated for different discharge conditions.It is shown that the EEDFs calculated from the local kinetic model clearly differ from the nonlocal EEDFs and both the local and nonlocal EEDFs are also clearly different with Maxwellian distributions.The appearance of dust particles results in an obvious decrease of high energy electrons and increase of low energy electrons when axial electric field is low.With the increase of axial electric field,the influence of dust particles on the EEDFs becomes smaller.The electron mobility and diffusion coefficients calculated on the basis of local and nonlocal EEDFs do not differ greatly to the dust-free ones.While,when dust density nd=10^6 cm^?3,the electron mobility increases obviously compared with the dust-free results at low axial electric field and decreases with the increasing axial electric field until they are close to the dust-free ones.Meanwhile,electron diffusion coefficients for dusty case become smaller and decrease with the increasing axial electric field.The ionization rate coefficients decrease when dust particles are introduced and they approach the dust-free results gradually with the increasing axial electric field.  相似文献   

2.
Plasma filling can dramatically improve the performance of high power microwave devices.The characteristics of high-power microwave propagation along plasma filled waveguides in an axial magnetic field are analyzed in this paper,and the ponderomotive force effect of high power microwave is taken into consideration.Theoretical analysis and preliminary numerical calculations are performed.The analyses show that the ponderomotive effect would change the plasma density,distribution of microwave field intensity,and dispersion of wave propagation.The higher the microwave power,the stronger the ponderomotive effect.In different magnetic fields,the ponderomotive effect is different.  相似文献   

3.
The randomness of turbulent reentry plasma sheaths can affect the propagation and scattering properties of electromagnetic waves.This paper developed algorithms to estimate the influences.With the algorithms and typical reentry data,influences of GPS frequency and Ka frequency are studied respectively.Results show that,in terms of wave scattering,the scattering loss caused by the randomness of the turbulent plasma sheath increases with the increase of the ensemble average electron density,ensemble average collision frequency,electron density fluctuation and turbulence integral scale respectively.Also the scattering loss is much smaller than the dielectric loss.The scattering loss of Ka frequency is much less than that of the GPS frequency.In terms of wave propagation,the randomness arouses the fluctuations of amplitude and phase of waves.The fluctuations change with altitudes that when the altitude is below 30 km,fluctuations increase with altitude increasing,and when the altitude is above 30 km,fluctuations decrease with altitude increasing.The fluctuations of GPS frequency are strong enough to affect the tracking,telemetry,and command at appropriate conditions,while the fluctuations of Ka frequency are much more feeble.This suggests that the Ka frequency suffers less influences of the randomness of a turbulent plasma sheath.  相似文献   

4.
Using the linearized relativistic Vlasov-Maxwell equations,a generalized expression for the plasma conductivity tensor is derived.The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function.The propagation characteristics of the O-mode (cut offs,resonances,propagation regimes,harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments.Further,it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values,as a result the propagation regime is reduced.The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.  相似文献   

5.
At present,spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT),which are known to be life-limiting components due to plasma corrosion and carbon deposition.A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions.We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle.The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes,contributing to a reduction in the electrode breakdown voltage.Additionally,it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments.The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases,and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity.The induction-triggered coaxial PPT we propose has a simplified trigger structure,and it is an effective attempt to optimize the micro-satellite thruster.  相似文献   

6.
The plasma sheath covering hypersonic vehicles has a significant effect on the propagation of electromagnetic waves. Based on the calculation of the flow field of a conical cylindrical, this work studies the propagation of electromagnetic waves in plasma sheath at L-band and Ku-band, and discusses the propagation characteristics in the head, side and tail of the sheath. The dielectric properties of plasma sheath are related to flight speed and altitude. A flight condition corresponds to a unique distribution of dielectric properties. For the conical cylindrical, the results show that flight speed is generally negatively correlated with the transmissivity of the plasma sheath. The reflection characteristics of electromagnetic waves at the L-band and Ku-band when obliquely incident to the plasma sheath show a downward trend. When the frequency is increased to Ku-band, the propagation characteristics of electromagnetic waves in the plasma sheath are related to the position of the sheath.  相似文献   

7.
The propagation of the high-power microwave (HPM) with a frequency of 6 GHz in the low-pressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on the wave equation,the electron drift-diffusion equations and the heavy species transport equations,which were solved by means of COMSOL Multiphysics software.The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma.The attenuation of the transmitted wave increased nonlinearly with the electron density.Specifically,the growth of the attenuation slowed down as the electron density increased uniformly.In addition,the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.  相似文献   

8.
The electric field induced Lyman-α emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2 s state. The metastable particles are obtained by means of a proton beam extracted from a hydrogen plasma source, and neutralised by interaction with vaporised caesium.When a 2 s atom enters a region where an electric field is present, it undergoes a transition to the2 p state(Stark mixing). It then quickly decays to the ground level, emitting Lyman-α radiation,which is collected by a photomultiplier. The 2 s→2 p transition rate is proportional to the square of the magnitude of the electric field, and depends on the field oscillation frequency(with peaks around 1 GHz). By measuring the intensity of the Lyman-α radiation emitted by the beam it is possible to determine the magnitude of the field in a defined region. In this work, an analysis of the behaviour of the diagnostic under static or radiofrequency electric field is presented. Electric field simulations obtained with a finite element solver of Maxwell equations, combined with theoretical calculations of the Stark mixing transition rate, are used to develop a model for the interpretation of photomultiplier data. This method shows good agreement with experimental results for the static field case, and allows to measure the field magnitude for the oscillating case.  相似文献   

9.
The magnetically insulated line oscillator(MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power microwaves(HPM) research. In order to improve the power conversion efficiency and eliminate or at least minimize anode plasma formation in the load region and radio frequency(RF) breakdown in the slow wave structure(SWS) section, an X-band MILO is presented and investigated numerically with KARAT code. The design idea is briefly presented and the simulation results are given and discussed. In the simulation, HPM is generated with peak power of 3.4 GW, maximum electric field of about 1 MV/cm, and peak power conversion efficiency of 14.0%, when the voltage is 559.1 kV and the current is 43.2 kA. The microwave frequency is pure and falls in the X-band of 9.0 GHz. The theoretical investigation and the simulation results are given to prove that the anode plasma formation and the RF breakdown can be effectively avoided or at least minimized,respectively.  相似文献   

10.
A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length,ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.  相似文献   

11.
In the present study, a coaxial transmission line resonator is constructed, which is always capable of generating cold microwave plasma jet plumes in ambient air in spite of using argon, nitrogen, or even air, respectively. Although the different kinds of working gas induce the different discharge performance, their ionization processes all indicate that the ionization enhancement has taken place twice in each pulsed periods, and the electron densities measured by the method of microwave Rayleigh scattering are higher than the amplitude order of 1018 m−3. The tail region of plasma jets all contain a large number of active particles, like NO, O, emitted photons, etc, but without O3. The formation mechanism and the distinctive characteristics are attributed to the resonance excitation of the locally enhanced electric fields, the ionization wave propulsion, and the temporal and spatial distribution of different particles in the pulsed microwave plasma jets. The parameters of plasma jet could be modulated by adjusting microwave power, modulation pulse parameters (modulation frequency and duty ratio), gas type and its flow rate, according to the requirements of application scenarios.  相似文献   

12.
《等离子体科学和技术》2019,21(10):105501-53
Continuous microwave propagation through a time-varying plasma and frequency up-conversion has been demonstrated by particle-in-cell(PIC) simulation.In principle,it is possible to transform a 2.45 GHz source radiation to an arbitrary larger frequency radiation.The energy conversion is also obtained by the theoretical analysis and has been testified by PIC simulation.The source wave was propagating in a parallel plate waveguide locally filled with the ionized gas.In this paper we would discuss the effects of the rise time,the plasma length,the switching time and the collision frequency on the energy conversion,and the methods to improve the upshift wave energy are proposed.We also put forward the new concept of the critical values of the rise time and the source wave amplitude to provide a theoretical basis for the selection of parameters in the experiments.  相似文献   

13.
A two-dimensional self-consistent fluid model is used to investigate the effects of DC-voltage polarity in plasma initiation and propagation of helium plasma jet.The simulation results indicate that the difference in initial breakdown for the positive jet and negative jet leads to a difference in the electron density of about 4 orders of magnitude,even with the same initial electric field,which also influences the subsequent propagation.In the propagation process of negative jets,the ionization process exists in a longer gas channel behind the streamer head.In addition,the drift process to the infinite grounded electrode driven by the electric field results in higher energy consumption in the ionization process.However,in the positive jet,the ionization process mainly exists in the streamer head.Therefore,the differences in the initial breakdown and propagation process make the electric field intensity and the ionization weaker in the streamer head of the negative jet,which explains the weaker and shorter appearance of the negative jet compared to the positive jet.Our model can adequately reproduce the experimental results,viz.a bullet-like propagation in the positive jet and a continuous plasma plume in the negative jet.Furthermore,it also indicates that the streamer velocity shows the same variations as the electron drift velocity for both positive and negative jets.  相似文献   

14.
Both experimental and simulated studies of microdischarge (MD) are carried out in a dielectric barrier discharge with a pin-to-pin gap of 3.5 mm, ignited by a sinusoidal voltage with a peak voltage of 10 kV and a driving frequency of 5 kHz. Statistical results have shown that the probability of the single current pulse in the positive half-period (HP) reaches 73.6% under these conditions. Experimental results show that great luminous intensity is concentrated on the dielectric surface and the tip of the metal electrode. A 1D plasma fluid model is implemented by coupling the species continuity equations, electron energy density equations, Poisson equation, and Helmholtz equations to analyze the MD dynamics on the microscale. The simulated results are in good qualitative agreement with the experimental results. The simulated results show that the MD dynamics can be divided into three phases: the Townsend phase, the streamer propagation phase, and the discharge decay phase. During the streamer propagation phase, the electric field and electron density increase with the streamer propagation from the anode to the cathode, and their maximal values reach 625.48 Td and 2.31 × 1019 m−3, as well as 790.13 Td and 3.58 × 1019 m−3 in the positive and negative HP, respectively. Furthermore, a transient glow-like discharge is detected around the anode during the same period of streamer propagation. The formation of transient glow-like discharge is attributed to electrons drifting back to the anode, which is driven by the residual voltage in the air gap.  相似文献   

15.
In this study, uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system. A phenomenological model previously developed by our group was used to simulate the distribution of the electric strength and electron density of plasma. Results indicate that the electric field in the cavity includes multiple modes, i.e. TM02 and TM03. When the gas pressure exceeds 10 kPa, the electron density of plasma increases and plasma volume decreases. A T-shaped substrate was developed to achieve uniform temperature, and the substrate was suspended in air from Ø70 to 100 mm, thus eliminating vertical heat dissipation. An edge electric field was added to the system after the introduction of the T-shaped substrate. Moreover, the plasma volume in this case was greater than that in the central electric field but smaller than that in the periphery electric field of the TM02 mode. This indicates that the electric field above and below the edge benefits the plasma volume rather than the periphery electric field of the TM02 mode. The quality, uniformity and surface morphology of the deposited diamond films were primarily investigated to maintain substrate temperature uniformity. When employing the improved substrate, the thickness unevenness of the Ø100 mm diamond film decreased from 22% to 7%.  相似文献   

16.
Microwave frequency downshift in the time-varying collision plasma has been demonstrated by particle-in-cell simulations.The simulation results are consistent with the theoretical analysis,and the preconditions for microwave frequency downshift are that the collision frequency needs to be greater than the incident wave frequency,and the plasma frequency is two times greater than the incident wave frequency.Finally,the simulation results are compared with the reported experimental results indicating good agreement.  相似文献   

17.
A large magnetized plasma sheet with size of 60 cmx60 cmx2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil.The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies,in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field.In this measurement,parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity.In the experiment,upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field.These resonance phenomena cannot be found in the case of parallel polarization incidence.This result is consistent with theoretical consideration.According to the resonance condition,the electron density values at the resonance points are calculated under various experimental conditions.This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus.Moreover,it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion.  相似文献   

18.
The propagation of a normal incident electromagnetic plane wave in a mixture of rare plasma and dense neutral gas is investigated by one dimensional model. The numerical results show that the amplitude of wave electric field is decayed dramatically and its phase is modulated obviously in a distance of a few wave lengthes due to the frequent collisions between electrons and neutrals ( the collision frequency uc is near or even larger than the wave frequency ω0),  相似文献   

19.
A two-dimensional self-consistent kinetic model was developed to study the influence of the various factors on the electron energy distribution function. These factors include gas pressure the driving frequency, the radius and length of the inductively coupled plasma equipment, the amplitude of the radio-frequency coil current, and the number of turns of rf coils. The spatial profiles of the rf electric field and power density have also been calculated under the same parameters. Numerical results show that the electron energy distribution functions are significantly modified and the spatial profiles of the rf electric field and rf power density are also demonstrated.  相似文献   

20.
We present in this paper the comparison of an electric double layer (DL) in argon helicon plasma and magnetized direct current (DC) discharge plasma. DL in high-density argon helicon plasma of 13.56 MHz RF discharge was investigated experimentally by a floating electrostatic probe and local optical emission spectroscopy (LOES). The DL characteristics at different operating parameters, including RF power (300–1500 W), tube diameter (8–60 mm), and external magnetic field (0–300 G), were measured. For comparison, DL in magnetized plasma channel of a DC discharge under different conditions was also measured experimentally. The results show that in both cases, DL appears in a divergent magnetic field where the magnetic field gradient is the largest and when the plasma density is sufficiently high. DL strength (or potential drop of DL) increases with the magnetic field in two different structures. It is suggested that the electric DL should be a common phenomenon in dense plasma under a gradient external magnetic field. DL in magnetized plasmas can be controlled properly by magnetic field structure and discharge mode (hence the plasma density).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号