首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, an efficient boundary condition is applied to solve the photoionization rate, and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure. The results show that the new boundary condition improves the calculation accuracy, but the influence of photoionization on the streamer discharge process is not obvious. The discharge current in the development of streamer discharge is defined, and the corresponding expression of the positive and negative streamer discharge current is given. The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced. In the process of discharge, only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure, and the trend of the other parameters is basically the same as that described in the previous paper. The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure, which has certain significance for the development of aviation and high voltage engineering.  相似文献   

2.
In this paper, the interactions between two dielectric barrier discharge(DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise.The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.  相似文献   

3.
In this letter, the streamer propagation in the atmospheric pressure helium plasma jet with afloating electrode nozzle driven by the kHz AC power supply is investigated. The current signal induced by the space charges and the mean propagation velocity of the guided ionization waves are measured by the capacitive probe method in the discharge region. The space charges in the guided ionization waves are found to increase with the applied voltage, which enhances both the electric field near the streamer head and the propagation velocity. The applicability of the streamer mechanism to the propagation of the guided ionization waves is validated by this electrical diagnostic method.  相似文献   

4.
The mechanisms of streamer generation and propagation in double-sided pulsed surface dielectric barrier discharge (SDBD) on both sides have been analyzed and investigated by experiment and numerical simulation. The fully exposed asymmetric SDBD has two discharge processes located on the high voltage electrode (HVE) side and the ground electrode (GE) side. Discharge images of the HVE side and GE side are taken by a digital camera under continuous pulse and ICCD (Intensified Charge Coupled Device) is utilized to diagnose the generation and propagation of streamers in single pulse discharge. In order to understand the physical mechanisms of streamer evolution more deeply, we establish a 2D simulation model and analyze it from the aspects of electron density, ion density, reduced electric field and electron impact ionization source term. The results show that the primary and secondary discharges on the HVE side and the GE side of the double-sided SDBD are composed of positive streamer and negative streamer, respectively. On the HVE side, the accumulation of positive charges on the dielectric surface causes the direction of the electric field to reverse, which is the principal factor for the polarity reversal of the streamer. On the GE side, both the negative charges accumulated on the dielectric surface and the falling voltage are the key factors for the streamer polarity switch.  相似文献   

5.
Both experimental and simulated studies of microdischarge (MD) are carried out in a dielectric barrier discharge with a pin-to-pin gap of 3.5 mm, ignited by a sinusoidal voltage with a peak voltage of 10 kV and a driving frequency of 5 kHz. Statistical results have shown that the probability of the single current pulse in the positive half-period (HP) reaches 73.6% under these conditions. Experimental results show that great luminous intensity is concentrated on the dielectric surface and the tip of the metal electrode. A 1D plasma fluid model is implemented by coupling the species continuity equations, electron energy density equations, Poisson equation, and Helmholtz equations to analyze the MD dynamics on the microscale. The simulated results are in good qualitative agreement with the experimental results. The simulated results show that the MD dynamics can be divided into three phases: the Townsend phase, the streamer propagation phase, and the discharge decay phase. During the streamer propagation phase, the electric field and electron density increase with the streamer propagation from the anode to the cathode, and their maximal values reach 625.48 Td and 2.31 × 1019 m−3, as well as 790.13 Td and 3.58 × 1019 m−3 in the positive and negative HP, respectively. Furthermore, a transient glow-like discharge is detected around the anode during the same period of streamer propagation. The formation of transient glow-like discharge is attributed to electrons drifting back to the anode, which is driven by the residual voltage in the air gap.  相似文献   

6.
In this paper,a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch.The effects of injection time of pre-ionization,pulse rise time,and the pre-ionization jitter are discussed and verified through experiments.It indicates that the pre-ionization should be injected when the electric field is high enough in the gap,injection after 80%peak-time can ensure its effectiveness.Then the statistical time delay jitter will be determined by the pre-ionization jitter,which is an intrinsic restriction of the self-triggered switch.However,when the changing rate of the pulsed electric field exceeds a certain value,the breakdown time delay jitter can be partly offset in the formative stage because the formative time delay has an exponential relationship with the electric field.Therefore,lower time jitter can be obtained under pulses with a shorter pulse rise time.In general,the results of the calculation model agree with the experimental results,and the experimental parameters which lead to a low jitter can also be used as a reference.  相似文献   

7.
Atmospheric pressure glow discharge (APGD) plasma in air has high application value.In this paper,the methods of generating APGD plasma in air are discussed,and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied.It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress.Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field,the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated.Further,through combining electrode structures,a large area of APGD plasma in air is generated.On the other hand,by using the method of increasing the density of initial electrons,millimeter-gap glow discharge in atmospheric pressure air is formed,and a maximum gap distance between electrodes is 8 ram.By using the APGD plasma surface treatment device composed of contact electrodes,the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained.The present paper provides references for the researchers of industrial applications of plasma.  相似文献   

8.
The dielectric barrier discharge(DBD) in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments. In this paper, the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified. It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap. The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode. The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature, which is beneficial for industrial applications. This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD, which can provide some references for the development and applications of the DBD in the future.  相似文献   

9.
The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current(AC) voltage in a low pressure test platform for a 60 cm rod–plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.  相似文献   

10.
A two-dimensional self-consistent fluid model is used to investigate the effects of DC-voltage polarity in plasma initiation and propagation of helium plasma jet.The simulation results indicate that the difference in initial breakdown for the positive jet and negative jet leads to a difference in the electron density of about 4 orders of magnitude,even with the same initial electric field,which also influences the subsequent propagation.In the propagation process of negative jets,the ionization process exists in a longer gas channel behind the streamer head.In addition,the drift process to the infinite grounded electrode driven by the electric field results in higher energy consumption in the ionization process.However,in the positive jet,the ionization process mainly exists in the streamer head.Therefore,the differences in the initial breakdown and propagation process make the electric field intensity and the ionization weaker in the streamer head of the negative jet,which explains the weaker and shorter appearance of the negative jet compared to the positive jet.Our model can adequately reproduce the experimental results,viz.a bullet-like propagation in the positive jet and a continuous plasma plume in the negative jet.Furthermore,it also indicates that the streamer velocity shows the same variations as the electron drift velocity for both positive and negative jets.  相似文献   

11.
In order to achieve atmospheric pressure diffuse dielectric barrier discharge (DBD) in air, a helical–helical electrode structure with a floating-voltage electrode is proposed in this paper. Results from an electric field distribution simulation indicate that strong electric fields are formed where the helical-contact electrodes’ insulating layers are in contact with each other, as well as near the floating-voltage electrode, which contributes to the production of a large number of seed electrons. The electric field within the air gap is weak (< 3×106 Vm−1), which inhibits the rapid development of electron avalanches and the formation of filament discharge. The experimental result shows that a 3.0 mm width diffuse DBD is generated in air. Moreover, based on the study of the helical–helical electrode with a floating-voltage electrode, a threedimensional electrode structure is presented, and a three-dimensional diffuse discharge is generated in air by adopting this electrode structure. The plasma studied is stable and demonstrates good diffusion characteristics, and therefore has potential applications in the field of exhaust gas treatment and air purification.  相似文献   

12.
This paper presents an experimental investigation into the runaway electron spectrum with a gas diode composed of a rough spherical cathode and plane anode under the excitation of a nanosecond-pulse generator in atmospheric air. The runaway electron beams are measured by a collector covered with aluminum foil with a thickness from 0 μm(mesh grid) to 50 μm. The energy spectrum is calculated by an improved Tikhonov regularization called the maximum entropy method. The experimental results show that the transition state of the discharge consisted of multiple streamer channels stretched from the cathode with glow-like plasma uniformly distributed over the anode. The number of runaway electrons measured by the collector is in the order of 1010 in atmospheric pressure air with a gap spacing of 5 mm and applied voltages of70–130 kV. The cathode with a rough surface creates a more inhomogeneous electric field and larger emission site for the runaway electrons around the cathode, providing conditions for the coexistence of filamentary streamer and diffuse discharge. The reconstructed spectra show that the energy distribution of the runaway electrons presents a single-peak profile with energies from eU_m/2–2 eU_m/3(U_m is maximal voltage across the gap).  相似文献   

13.
One of the main problems in the Ultra High Voltage(UHV) transmission project is to choose the external insulation distance,which requires a deep understanding of the long air gap discharge mechanism.The leader-streamer propagation is one of most important stages in long air gap discharge.In the conductor-tower lattice configuration,we have measured the voltage,the current on the high voltage side and the electric field in the gap.While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape,the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in the experiment.Besides,it is found that the leader velocity,width and injected charge for the branch type streamer are greater than those of a diffuse type.We propose that the phenomenon results from the high humidity,which was 15.5-16.5 g/m~3 in our experiment.  相似文献   

14.
To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere.Firstly,the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied,and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed.Subsequently,the effects of wire mesh,the inclination angle of the dielectric plate,and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed.The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge,and the 1 mm flowing water film is directly used as the electrode,and high-active plasma is formed directly on the lower surface of the water film.In addition,a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect.The experimental results show that after 50 min of treatment,the decolorization rate of the methyl orange solution reaches 96%,which provides a new idea for industrial applications of wastewater treatment.  相似文献   

15.
Based on the idea that a large number of charged particles can be generated by a high-frequency alternating current(AC)dielectric barrier discharge(DBD),and charged particles can be accelerated directionally by a direct current(DC)electric field,a new type of ionic wind formation method is proposed in this paper.To this end,a carbon fiber spiral electrode serves as the generation electrode and a metal rod electrode as the collection electrode,with AC and DC potentials applied respectively to the generation electrode and the collection electrode to form an AC-DC coupled electric field.Under the action of the coupled electric field,a dielectric barrier discharge is formed on the carbon fiber spiral electrode,and the electrons generated by the discharge move from the generation electrode to the collection electrode in the opposite direction of the electric field vectors.During the movement,energy is transferred to the gas molecules by their colliding with neutral gas molecules,thereby forming a directional gas stream movement,i.e.ionic wind.In the research process,it is verified through electric field simulation analysis and discharge experiment that this method can effectively increase the number of charged particles in the discharge process,and the velocity of the ionic wind is nearly doubled.On this basis,the addition of a third electrode forms a distinct discharge region and an electron acceleration region,which further increases its velocity.The experimental result shows that the ionic wind speed reaches up to 2.98 m s^?1.Thanks to the ability of the electrode structure to generate an atmospheric pressure DBD plasma and form an ionic wind,we can create a noise-free air purification device without resorting to a fan,with this device having good application prospects in the field of air purification.  相似文献   

16.
The formation of homogeneous dielectric barrier discharge(DBD)in air is a key scientific problem and core technical problem to be solved for the application of plasmas.Here,we report the effect of two-dimensional(2D)nanomaterial Ti3C2Tx(Tx=-F,-O and/or-OH)on regulating the electrical discharge characteristics.The field emission and weak bound state property of Ti3C2Tx can effectively increase the seed electrons and contribute to the generation of atmospheric pressure homogeneous air DBD.The electron avalanche development for the uneven electrode structure is calculated,and the discharge mode transition is modeled.The comparative analyses of discharge phenomena validate the regulation of Ti3C2Tx on the discharge characteristics of DBD.The light emission capture and the voltage and current waveforms verify that the transition of Townsend discharge to streamer discharge is effectively inhibited.The optical emission spectra are used to characterize the plasma and confirm that it is in a non-equilibrium state and the gas temperature is at room temperature.This is the first exploration of Ti3C2Tx on the regulation of electrical discharge characteristics as far as we know.This work proves the feasibility of Ti3C2Tx as a source of seed electrons to form homogeneous DBD,establishing a preliminary foundation for promoting the application of atmospheric pressure non-equilibrium plasma.  相似文献   

17.
In this paper, plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface. The physicochemical characteristics of samples are investigated and the electrical performances measured. The obtained results show that compared with untreated and single treated samples, the samples treated by step gradient modification significantly improve the flashover performance. According to experiment and simulation, the mechanism explanations are summarized as follows. First, it is found that the step gradient conductivity can effectively optimize the electric field distribution of a needle-needle electrode. Then, step gradient modification suppresses the accumulation of surface charge at the triple junction and makes the charge distribution more uniform. Furthermore, it can accelerate the surface dissipation on a high electrical field region and control the dissipation rate on a low electrical field region. All these results can restrain surface discharge and increase the flashover voltage. The step gradient modification method proposed in this paper provides a new idea for improving the surface insulation performance.  相似文献   

18.
In this paper, a two-dimensional axisymmetric fluid model was established to investigate the influence of nitrogen impurity content on the discharge pattern and the relevant discharge characteristics in an atmosphere pressure helium dielectric barrier discharge (DBD). The results indicated that when the nitrogen content was increased from 1 to 100 ppm, the discharge pattern evolved from a concentric-ring pattern into a uniform pattern, and then returned to the concentricring pattern. In this process, the discharge mode at the current peak moment transformed from glow mode into Townsend mode, and then returned to glow mode. Further analyses revealed that with the increase of impurity level, the rate of Penning ionization at the pre-ionization stage increased at first and decreased afterwards, resulting in a similar evolution pattern of seed electron level. This evolution trend was believed to be resulted from the competition between the N2 partial pressure and the consumption rate of metastable species. Moreover, the discharge uniformity was found positively correlated with the spatial uniformity of seed electron density as well as the seed electron level. The reason for this correlation was explained by the reduction of radial electric field strength and the promotion of seed electron uniformity as pre-ionization level increases. The results obtained in this work may help better understand the pattern formation mechanism of atmospheric helium DBD under the variation of N2 impurity level, thereby providing a possible means of regulating the discharge performance in practical application scenarios.  相似文献   

19.
地面的放射性主要来源于空间辐射、地壳放射性元素衰变和人工核活动等,地面放射性可引起地表电场的变化,地表电场变化的区域和强度达到一定的条件后可引起电离层的扰动。基于LAIC电场机制假设,本文从地面放射性引起空气电离开始推导地表大气电导率变化、地面垂直电场至电离层底部传导过程,根据临界电场理论计算地面大气垂直电场、大气附加电流密度以及电离层准静态电场的电势分布,最后通过格林函数法求解得到电离层中水平电场的分布。建立了基于地面放射性活度的地表大气电导率公式,改进了地表异常电场传播到电离层的计算过程,给出了电离层电场扰动的计算公式。利用氡和地面电场仪的实例观测数据对地面放射性异常引起的电离层扰动的计算过程进行了验证,理论计算得到的地面电场和电离层扰动的结果与实际测量结果基本一致。  相似文献   

20.
To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were studied.We found that the region with a strong electric field,which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure,provided the initial electron for the entire discharge process.Thus,the discharge voltage was reduced.The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons.Thus,the transient current pulse discharge was reduced significantly,and an APGD in air was achieved.We designed double layer line-line contact electrodes,which can generate the APGD on the surface of a material under treatment directly.A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope(SEM).Two electrode structures–the multi-row line-line and double-helix line-line contact electrodes–were designed.A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes.This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号