首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
堆芯熔化严重事故下反应堆压力容器下封头高温蠕变分析   总被引:4,自引:2,他引:2  
核电厂在发生堆芯熔化严重事故时,采用堆内熔融物滞留(IVR)策略将熔融物包容在反应堆压力容器(RPV)内是一项重要缓解措施。在IVR策略期间,RPV下封头在熔融物的极高温度载荷和力学载荷的共同作用下很有可能因过度蠕变变形而失效。因此,有必要对熔融物滞留条件下RPV下封头进行蠕变变形分析,以保证RPV结构完整性。该文在假定IVR条件下,采用有限元方法对RPV下封头进行热-结构耦合分析,通过计算得到容器壁的温度场和应力场,以及下封头的塑性和蠕变变形,并结合塑性和蠕变断裂判据对下封头进行失效分析。结果表明,考虑蠕变影响后,结构的变形将大大增加;严重事故下采取熔融物滞留策略期间,RPV下封头的主要失效模式为蠕变失效而非塑性失效;内压对蠕变变形量和蠕变失效时间有较大影响。该文为严重事故下RPV下封头的蠕变和失效研究提供了分析方法。   相似文献   

2.
《核安全》2017,(2)
当发生堆芯熔化事故时,压力容器外部冷却是保持压力容器完整性及实现熔融物堆内滞留(In-Vessel Retention,简称IVR)的一项重要策略。在高温熔融物的热载荷和内部压力的共同作用下,压力容器外壁面和保温层之间的冷却流道可能发生变形,造成冷却能力的降低,进而威胁到压力容器的完整性。因此,有必要分析IVR条件下压力容器冷却流道变形的影响因素。结果表明,热膨胀是造成冷却流道变形的主要因素。在IVR策略成功的前提下,内压和热流密度对流道变形的影响有限。  相似文献   

3.
熔融物堆内滞留条件下压力容器变形   总被引:2,自引:0,他引:2  
熔融物堆内滞留(In-Vessel Retention,IVR)已经成为第三代反应堆一项关键的严重事故缓解策略,而压力容器外部冷却(External Reactor Vessel Cooling,ERVC)技术则是保证IVR得以成功实施的关键。当发生堆芯熔化时,高温熔融物对压力容器(Reactor Pressure Vessel,RPV)下封头的热冲击会导致RPV壁面和由其构成的外部冷却通道的形状发生变化,使局部传热恶化,进而造成IVR的失效。因此,有必要对IVR条件下RPV壁面的变形进行研究。本文利用有限元软件ANSYS对RPV进行了几何建模、温度场分析和力学场分析。结果表明,在RPV外部实现冷却、内部实现泄压的前提下,壁面变形为13.85-18.75 mm。在1 MPa内压的作用下,高温蠕变会使壁面变形随时间增大,但其增量有限。热膨胀是造成壁面变形的主要因素。  相似文献   

4.
严重事故下堆芯熔融物再分布于压力容器下封头,在衰变热作用下高温堆芯熔融物对压力容器壁面施加较大的热负荷,可能导致压力容器失效。针对压力容器内熔融物滞留下的传热过程,基于Fortran90语言开发了椭球形下封头压力容器内熔融物堆内滞留(IVR)分析程序IVRASA-ELLIP,计算具有椭球形下封头的压力容器在严重事故下稳态熔池的传热过程及IVR特性。利用IVRASA-ELLIP程序计算了VVER-1000压力容器内熔池的传热,分析具有椭球形下封头的压力容器各处的壁面热流密度、氧化物硬壳厚度和压力容器壁厚,并与运用IVRASA程序计算的AP1000稳态熔池传热结果进行对比分析。研究结果表明,在相同初始参数下椭球形下封头内的壁面热流密度较球形下封头内的小,与热流密度的变化趋势相对应,椭球形下封头内压力容器壁的消融量较球形下封头内的小,椭球形下封头内形成的氧化物硬壳厚度较球形下封头内的厚。  相似文献   

5.
参考某百万千瓦级核电厂设计,针对堆内熔融物滞留(IVR)策略投入后晚期(即压力容器下封头已形成熔融池的情况下)可能的一回路再注水场景开展分析,研究晚期再注水的一回路压力响应。通过与不实施再注水事故工况的对比分析,综合评估实施再注水时间、再注水流量及严重事故泄压阀开启数量对一回路的压力影响,得到了各措施的影响规律,并针对严重事故管理策略提出建议。   相似文献   

6.
严重事敝下堆芯熔融物坍塌到反应堆压力容器(RPV)下封头时,可能造成贯穿件因高温熔融物热侵袭而失效,使压力容器丧失完整性,熔融物进入到反应堆堆腔中,导致熔融物堆内滞留(IVR)失效.在分析贯穿件脱落和熔融物流入贯穿件两种失效模式基础上,分别运用VTA程序和修正的整体凝固模型(MBF)计算贯穿件焊缝的熔化程度、热膨胀产生的摩擦力,估算贯穿件内熔融物流动的距离.结果表明,在成功实施反应堆压力容器外水冷(EVVC)措施条件下,300 MW压水堆核电厂压力容器的下封头不会因贯穿件失效而丧失完整性,堆芯熔融物小能通过贯穿件失效向堆腔迁移.  相似文献   

7.
大功率先进压水堆压力容器外部冷却能力研究   总被引:1,自引:1,他引:0  
目前压力容器外部冷却(ERVC)作为严重事故管理策略中压力容器内熔融物滞留(IVR)的一部分已得到了广泛应用。本文采用RELAP5系统安全分析程序定性研究一些流动参数和边界条件(如进出口面积、冷却水的入口温度、下封头处的加热功率、下封头处流道的间隙尺寸及注水高度等)对大功率先进压水堆压力容器外部冷却的自然循环能力产生的效应,它为结构的设计和系统的瞬态响应行为提供了一定的分析依据。  相似文献   

8.
DVI管线破裂始发严重事故的IVR分析   总被引:1,自引:1,他引:0  
本文选取了直接注入管线破裂始发的严重事故,分析堆芯熔融物压力容器内保持(IVR)策略实施以后压力容器下腔室内堆芯碎片和压力容器下封头的响应、堆芯碎片与压力容器壁面的传热、压力容器外壁面与堆腔水之间的传热以及压力容器不同区域的热流密度。研究表明,该事故序列下未发生下封头蠕变失效,区域4有最早发生蠕变失效的可能性。  相似文献   

9.
熔融物堆内滞留(In-vessel Retention,IVR)指的是在核电厂严重事故发生后,通过在压力容器和保温层间隙注入冷却水防止压力容器熔穿失效。本文基于COMSOL Multiphysics软件建立了一个流-热-固耦合计算模型,对IVR技术作用下的反应堆压力容器(Reactor Pressure Vessel,RPV)下封头双层熔融池的演变过程进行了仿真研究。当前模型计算结果表明:在稳态分层的状态下,与氧化物层接触的下封头未发生明显的熔化,与金属层接触的下封头会发生明显的熔化,但在被冷却条件下依然可以保持压力容器的完整性。  相似文献   

10.
《核动力工程》2015,(6):56-60
基于堆芯熔融物与压力容器传热的机理分析模型,采用风险导向事故分析方法(ROAAM)分析压水堆在严重事故情况下通过冷却压力容器外部的手段来实施堆芯熔融物滞留在压力容器内(IVR)策略的有效性。以核电厂一级概率安全评价(PSA)分析结果为参考,计算ACP1000典型严重事故序列,分析影响熔融物传热的重要参数不确定性。概率分析结果表明:ACP1000发生假象的严重事故情况下,IVR策略有效性概率大于99%;由于熔融池顶部的金属层出现集热效应,下封头发生传热危险的主要位置出现在金属层。  相似文献   

11.
目前国际上普遍采用堆芯熔融物压力容器内滞留(IVR)策略来缓解严重事故后果。本文基于日本应用能源研究所开发的核电厂事故分析程序SAMPSON,对其压力容器内熔融物冷却分析(DCA)模块进行改进,增加了熔池内金属和氧化物分层模型,开发了熔融物三维直角坐标网格与压力容器三维曲面坐标的交界面几何参数前处理程序,改进了压力容器外冷却的传热关系式。通过AP1000核电机组严重事故下的IVR对改进后的程序进行分析验证,并与实验结果进行对比。结果表明,改进后的SAMPSON程序可对核电厂严重事故下下封头内的熔融物冷却滞留开展有效的模拟分析。  相似文献   

12.
目前国际上普遍采用堆芯熔融物压力容器内滞留(IVR)策略来缓解严重事故后果。本文基于日本应用能源研究所开发的核电厂事故分析程序SAMPSON,对其压力容器内熔融物冷却分析(DCA)模块进行改进,增加了熔池内金属和氧化物分层模型,开发了熔融物三维直角坐标网格与压力容器三维曲面坐标的交界面几何参数前处理程序,改进了压力容器外冷却的传热关系式。通过AP1000核电机组严重事故下的IVR对改进后的程序进行分析验证,并与实验结果进行对比。结果表明,改进后的SAMPSON程序可对核电厂严重事故下下封头内的熔融物冷却滞留开展有效的模拟分析。  相似文献   

13.
基于SCDAP/RELAP5程序建立了用于熔融物压力容器内滞留(IVR)瞬态分析的系统简化模型,通过对模块式小型堆IVR过程的瞬态计算与分析,初步探索了IVR策略实施过程中压力容器下封头的瞬态热负荷特性。SCDAP/RELAP5程序的计算结果表明,利用外部冷却实施IVR策略的瞬态传热特性可分为熔融物注入之初的激烈传热阶段和熔融物硬壳形成之后的准稳态传热阶段。模块式小型堆的IVR瞬态分析表明,瞬态过程中的热流密度峰值不会达到临界热流密度,最终形成的稳定熔融池传热具有很大的安全裕量。研究同时发现SCDAP/RELAP5程序用于IVR分析时在模型上存在一定的不足。  相似文献   

14.
严重事故下堆芯熔融物坍塌到下封头,可能造成压力容器失效。本文针对造成压力容器失效的五个机制,运用一体化严重事故分析程序,分析全场断电分别叠加破口失水、主蒸汽输送管线破裂和蒸汽发生器传热管破裂事故对下封头完整性的影响。研究结果表明,三类事故均造成压力容器失效,全场断电叠加中破口失水事故由于破口位于热管段,距离稳压器和压力容器较近,事故响应更快,比全场断电分别叠加蒸汽发生器传热管破裂和主蒸汽输送管线破裂提前失效约20 000 s;全场断电叠加中破口失水事故中作用于贯穿件上的压力载荷超出贯穿件及其焊缝所能承受的最大载荷之和使得贯穿件弹出造成下封头失效;全场断电分别叠加蒸汽发生器传热管破裂和主蒸汽输送管线破裂均是因高温熔融物对下封头节点的损伤份额大于1使得下封头蠕变破裂造成压力容器失效。  相似文献   

15.
反应堆发生严重事故后,将堆芯熔融物滞留在压力容器内的策略(In-vessel Retention,IVR)是作为缓解严重事故的一项重要措施,该策略已成功应用于AP1000、华龙一号和CAP1400等先进压水堆的严重事故管理中。在实施IVR策略时,下封头受到高温熔融物的热负荷会发生变形,下封头的变形改变堆腔的冷却流道,这会直接影响压力容器外部冷却的排热能力和IVR策略的成功实施,有必要对下封头变形展开研究和应用。针对ISAA(Integrated Severe Accident Analysis)程序LHTCM(Lower Head Thermal Creep Module)模型简化薄膜应力模型十分简单和缺乏计算变形模块的问题,本文从机理出发,基于Timoshenko板壳理论、Nortron蠕变定律和大变形塑性理论开发了机理模型—下封头大变形模型,并将该模型集成到一体化严重事故分析程序ISAA中对FOREVER-EC2实验进行应用,预测失效时间与实验的误差仅为1.9%,预测底部伸长量与实验测量值较为符合,破口位置与实验一致。分析结果表明该模型能准确预测在堆芯熔化严重事故中下封头所受应力、...  相似文献   

16.
通过压力容器外部冷却(ERVC)以实现堆内熔融物滞留(IVR)作为反应堆严重事故缓解管理的一项重要举措一直以来广泛受到关注和研究。本文使用严重事故分析程序MELCOR,从瞬态角度对大型先进压水堆进行了IVR-ERVC相关研究。过程中重点关注了堆芯熔毁和重新定位,熔池形成、生长及其传热过程,并且对压力容器外部流动传热进行了分析。MELCOR计算所得下封头热流密度分布的瞬态结果与临界热流密度(CHF)比较和分析表明,1700 MWe大功率压水堆发生严重事故后在IVRERVC条件下能够保证压力容器的完整性,即,IVR-ERVC能够有效带出下封头熔融物的衰变热量,缓解严重事故后果。  相似文献   

17.
压力容器外部冷却(ERVC)是AP1000的严重事故响应策略堆内熔融物滞留(IVR)中至关重要的环节,ERVC能否实现的关键是压力容器下封头是否会出现临界热流密度(CHF)。本文通过对低压过冷沸腾工况构建三维流体力学模型,对过冷沸腾实验进行模型验证,然后对AP1000ERVC进行数值模拟研究,结合CHF模型预测压力容器外壁是否发生CHF,并与实验数据进行对比。计算结果表明,CHF不会发生,与实验相符。可见用三维数值模拟方法分析研究ERVC是可行的。  相似文献   

18.
堆内熔融物滞留(IVR)作为反应堆严重事故的关键缓解策略,目前已广泛应用于新一代压水堆(PWR)。针对IVR的有效性,如熔融池内对流、下封头传热、壁面临界热流密度(CHF)的估算等研究,是该领域数年来的热点。针对上述问题,国内外先后开展了数起实验,如COPO、BALI、SEMICO、COPRA等,并基于实验结果展开了大量数值模拟,以探索IVR下的传热规律,为其性能及设计提供参照。本文基于中子物理蒙特卡罗程序RMC对压力容器下封头熔融池模型进行了细网格建模及材料填充,并通过燃耗/衰变热计算DEPTH程序构建了熔融池内热源时序模型。研究结果显示,该模型能体现熔融池内热源变化趋势,得到的时序数据对IVR的进一步研究有重要意义。  相似文献   

19.
反应堆压力容器内熔融物滞留是先进反应堆设计严重事故缓解措施中的重要选项之一,在维持反应堆压力容器的完整性,包容堆芯熔融物方面具有重要作用。确保熔融物滞留有效性的关键是保证下封头内壁热负荷不超过下封头外壁面换热能力,而且在整个过程中不发生结构失效,即下封头剩余壁厚能够实现熔融物的承载。应用ASTEC程序,基于大型先进压水堆的设计,针对反应堆压力容器内熔融物滞留系统运行过程中冷却剂热工参数、下封头外壁面临界热流密度和最终下封头厚度进行计算分析,通过研究熔池对下封头的熔蚀和剩余厚度,判断下封头残留厚度对于熔融物的包容,评估系统的有效性。结果表明:在下封头较上部位置的部分区域内,换热较为剧烈,其中热流密度最大值出现在熔融物分两层的交界处,事故过程中下封头内壁将被熔融物金属层熔化,剩余厚度满足包容要求,但是最终剩余厚度十分有限。  相似文献   

20.
根据堆芯熔融物滞留(IVR)措施与压力容器的传热特点,对界面脱离临界热流密度(CHF)分析理论模型和考虑单个汽泡汽-液界面动力学的CHF分析理论模型分别进行改进,建立综合的CHF预测模型以应用于压力容器下封头CHF分析。结果表明,本文的综合模型预测的下封头CHF结果与国际上一些大尺寸的弯曲表面实验结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号