首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
以工业啤酒酵母为碳源,采用一步法合成了微生物质水热碳锰复合材料(MHTC),并利用XRD、FT-IR和SEM等对材料进行了表征。在此基础上,系统研究了不同C/Mn原子比、初始pH值、接触时间、初始铀浓度对MHTC吸附铀性能的影响。结果表明:C/Mn原子比为1∶10的碳锰复合材料(MHTC-10)对铀的吸附性能最优。在铀初始浓度为50 mg/L、初始pH=4.5条件下,12 h可达吸附平衡,最大吸附量为371 mg/g。吸附过程符合准二级动力学模型以及Freundlich等温模型。热力学数据表明,铀在MHTC-10上的吸附是一自发、放热的过程。该研究结果可为含铀环境中铀的分离富集提供新的思路。  相似文献   

2.
对多壁碳纳米管(MWNTs)进行偕胺肟基改性,采用透射电子显微镜(TEM)和傅里叶变换红外光谱仪(FTIR)进行表征,研究了改性前后MWNTs在不同条件下对铀的吸附性能。结果表明,在pH=2~8的范围内,未改性的碳纳米管(raw-MWNTs)与偕胺肟基改性碳纳米管(AO-MWNTs)对铀的吸附容量均是先增大后降低,pH值为5时达到最大。随着铀初始浓度的增大,raw-MWNTs和AO-MWNTs对铀的吸附容量逐渐升高。当铀初始浓度为10 mg/L时,AO-MWNTs对铀振荡吸附30 min后达到平衡,吸附容量可达18.93 mg/g,而raw-MWNTs对铀振荡吸附60 min后趋于稳定,吸附容量可达9.59 mg/g。AO-MWNTs对铀的吸附符合Langmuir和Freundlich模型,最大理论吸附容量为106.38 mg/g。  相似文献   

3.
采用辐射接枝法将甲基丙烯酸缩水甘油酯(GMA)接枝于尼龙66(PA66)纤维表面以引入环氧基团,利用N-乙酰-L-半胱氨酸(NAC)与环氧基团进行开环反应,制备出氨基酸改性的PA66纤维吸附材料。利用红外光谱、热重分析、X射线光电子能谱、扫描电镜对改性前后PA66纤维化学结构、表面形貌进行表征。考察了含铀水溶液的初始pH值、初始铀浓度和吸附时间对PA66纤维吸附材料的铀吸附容量影响规律。研究表明,当溶液初始pH为8时,铀吸附效果最佳;吸附时间为100 min时达到饱和吸附;吸附材料对铀的吸附符合准二级动力学模型和Langmuir等温吸附模型,吸附容量可达75.53 mg/g(铀初始质量浓度为25 mg/L)。此外纤维吸附材料在含铀等多种金属离子水溶液中具有良好的铀吸附选择性。  相似文献   

4.
以高锰酸钾/浓硫酸氧化法轴向切割多壁碳纳米管(MWCNTs)所制备的氧化石墨烯纳米带(GONRs)为原料,采用水热法制备了一种便于固液分离的功能性四氧化三铁/GONRs复合材料(MGONRs),对其进行了SEM、FT-IR、XRD等表征,并考察了其对U(Ⅵ)的吸附性能。探讨了溶液pH值、MGONRs用量、铀初始浓度、吸附时间和温度对MGONRs吸附U(Ⅵ)的影响。结果表明:MGONRs对U(Ⅵ)的吸附过程是与pH值和时间相关的自发的吸热过程;吸附符合准二级动力学模型和Langmuir模型,MGONRs对U(Ⅵ)的吸附量可达123.2 mg/g,且具有良好的再生性能,有望用于从放射性废水中分离和回收铀。  相似文献   

5.
甲醛改性多壁碳纳米管吸附铀的性能研究   总被引:1,自引:1,他引:0  
对纯化后的多壁碳纳米管(MWCNTs)采用甲醛进行羟甲基化改性,研究了改性后的MWCNTs对铀的吸附性能,考察了介质酸度、温度、超声时间、溶液初始浓度以及改性MWCNTs加入量对铀的吸附量和吸附率的影响。结果表明,改性MWCNTs在水溶液中的分散性良好,在pH为2.0~7.0范围内,改性MWCNTs对铀的吸附量和吸附率随pH增大而升高。铀的吸附量随初始浓度的增大而升高,铀初始浓度为50 μg/mL时,吸附量达46.44 mg/g,对铀的吸附率达90%以上。温度、超声时间和离子强度对其吸附量影响不大。吸附反应符合Langmuir和Freundlich方程,最大理论吸附容量为55.87 mg/g。  相似文献   

6.
合成了一种新型的具有高吸附量和较好吸附选择性的聚丙烯腈/氧化石墨烯的偕氨肟化复合材料(■-AO/GO)吸附剂,采用XRD、红外光谱对■-AO/GO进行了表征,通过静态吸附实验研究了pH值、固液比、吸附时间、铀溶液初始质量浓度等因素对吸附剂吸附铀的影响,并探讨了吸附过程的热力学和动力学。结果表明,吸附剂对铀的吸附量随吸附剂用量、吸附时间及铀酰离子初始浓度的增加而增加,但当这些因素达到一定值时,吸附达到平衡。在pH=5、固液比0.6g/L、吸附时间60min、铀初始质量浓度150mg/L的最佳吸附条件下,■-AO/GO对铀的吸附量达237mg/g。■-AO/GO对铀的吸附遵循Langmuir吸附等温线,说明■-AO/GO对铀的吸附属于单层吸附。■-AO/GO对铀的吸附较好地符合准二级动力学模型,表明吸附主要为化学吸附过程。  相似文献   

7.
韩磊  马福秋  薛云  矫彩山 《同位素》2019,32(1):13-21
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343 K温度时吸附量达201.6 mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303 K,溶液中初始铀浓度为500 mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

8.
以对叔丁基杯[4]芳烃为原料,用对氨基苯甲酸对其上沿进行修饰,获得了一种新型偶氮杯[4]芳烃羧基衍生物功能化材料5,11,17,23-四(4-羧基苯偶氮基)-25,26,27,28-四羟基杯[4]芳烃(p-TTPTA)。采用FT-IR、1H-NMR、SEM和EDS等方法对其进行结构表征,并探讨了吸附时间、溶液pH值、吸附材料用量、铀初始浓度及环境温度等对p-TTPTA吸附铀的影响。结果表明:所合成的p-TTPTA是一种构象稳定、表面粗糙、比表面积较大、能与铀离子配位的化合物;在溶液pH=5、铀初始浓度为20 mg/L、p-TTPTA用量为20 mg、吸附时间为8 h、温度为30 ℃条件下,p-TTPTA对铀的吸附效果最佳,吸附率达93%,说明p-TTPTA对铀具有较好的吸附性能。  相似文献   

9.
吸附剂的制备是海水提铀的关键。本文以聚氯乙烯(PVC)为基材,采用电子转移活化再生原子转移自由基聚合(ARGET-ATRP)方法在PVC上引入偕胺肟(AO)和丙烯酸叔丁酯(tBA)基团,合成了偕胺肟基纤维吸附剂(PVC-AO-tBA)。在不同温度、铀溶液浓度和pH值条件下进行了PVC-AO-tBA吸附铀的实验研究,探讨了亲水单体tBA的引入对AO吸附剂吸铀性能的影响。结果表明,在同等条件下,PVC-AO-tBA对铀的吸附量由PVC-AO的109 mg/g提高到170 mg/g;PVC-AO-tBA对酸碱度的适应范围更宽,最佳pH值由6扩展到4~6。动力学分析结果表明,吸附速率也有了明显上升。值得注意的是,在与海水酸碱度接近的弱碱性环境下,平衡吸附量由39 mg/g提高到71 mg/g,可见吸附效果得到明显提升。  相似文献   

10.
采用间氨基苯甲酸为原料,经重氮化-偶联反应对杯[4]芳烃进行上沿改性合成了间羧基苯偶氮基杯[4]芳烃衍生物,再通过取代反应对间羧基苯偶氮基杯[4]芳烃衍生物进行下沿修饰,制备出一种新型材料,即间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物,并采用FT-IR和1H-NMR对其进行结构表征。将该新型材料作为吸附剂用于吸附低浓度含铀水溶液中的铀,考察了溶液pH值、吸附剂用量、铀初始浓度、吸附时间、吸附体系温度等因素对其吸附性能的影响。结果表明:在铀初始浓度为10 mg/L、pH=4、温度为25 ℃、吸附剂用量为10 mg、吸附平衡时间为4 h时,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物对U(Ⅵ)的吸附效果最佳;其吸附过程符合准二级动力学模型,吸附过程为化学吸附;吸附等温线符合Langmuir吸附等温模型,说明该吸附体系是以单层吸附为主。综上所述,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物是一种潜在的铀吸附剂。  相似文献   

11.
合成了一种新型的、具有高吸附量和机械强度且易于分离的双偕胺肟基聚合物/Fe3O4@SiO2吸附剂,通过静态吸附实验,研究了pH值、固液比、吸附时间、溶液初始浓度等因素对吸附剂吸附铀的影响,并探讨了吸附过程的热力学和动力学。结果表明,吸附剂对铀的吸附量随吸附剂用量、吸附时间及铀酰离子初始浓度的增加而增加,但当这些因素达到一定值时,吸附达到平衡。最佳吸附条件为:pH=5、固液比为0.6 g/L、吸附时间为90 min、铀溶液初始浓度为100 mg/L,在此条件下其饱和吸附量可达到160 mg/g。吸附剂对铀的吸附遵循Langmuir等温吸附线,符合准二级动力学方程。  相似文献   

12.
通过自由基聚合方法,将功能化介孔碳(OCMK-3)与N-烯丙基单体相结合,制备了带有互穿网络结构的聚咪唑/有序介孔碳(AIM/OCMK-3)复合材料,并采用FT-IR、SEM和氮气吸附-脱附等温线对复合材料进行了表征。系统研究了溶液pH值、U(Ⅵ)初始浓度、反应时间、温度等因素对AIM/OCMK-3吸附U(Ⅵ)性能的影响。结果表明,pH=4.0时AIM/OCMK-3对U(Ⅵ)的吸附能力最高,吸附平衡时间为30 min。相较于CMK-3,AIM/OCMK-3单分子层饱和吸附容量由40.90 mg/g增大至213.01 mg/g。HCl为最佳洗脱溶液,AIM/OCMK-3在吸附-脱附铀的过程中有较好的稳定性,可重复使用。  相似文献   

13.
Amidoxime-functionalized ultra-high molecular weight polyethylene fibers (UHMWPEF-AO) were used to absorb uranium U(Ⅵ) from aqueous solutions.In this paper,we study effects of pH,initial U(Ⅵ) concentration,contact time,and temperature on U(Ⅵ) adsorption by UHMWPEF-AO.The adsorption process agrees well with pseudo-second-order and Langmuir model.UHMWPEF-AO exhibits excellent adsorptive performance for U(Ⅵ)with a maximum adsorption capacity of 176.12 mg/g at pH 4 and 298 K.The structures of UHMWPEF-AO and U(Ⅵ)-loaded UHMWPEF-AO are characterized by FT-IR and nano-CT.U(Ⅵ)-loaded UHMWPEF-AO is sintered after adsorption process to recycle absorbed U(Ⅵ).Powders collected after sintering process are examined by scanning electron microscopy and X-ray diffraction.These results indicate that UHMWPEF-AO is a promising candidate to remove U(Ⅵ) from uranium aqueous solutions.  相似文献   

14.
通过静态吸附实验,研究了pH值、吸附时间、铀初始质量浓度、吸附剂用量等因素对凹凸棒石及凹凸棒石与硫酸亚铁协同吸附铀的影响,从热力学和动力学方面对吸附过程进行了分析,并通过红外光谱(IR)和扫描电镜(SEM)探讨了其吸附机理。结果表明,当温度为25 ℃、pH值为5.0、凹凸棒石投加量为15 g/L、铀初始质量浓度为100 mg/L、吸附反应30 min时,凹凸棒石对UO2+2的吸附率达89.5%,饱和吸附量可达40.8 mg/g以上;加硫酸亚铁后,凹凸棒石和硫酸亚铁协同吸附铀的效果大幅提高,在25 ℃、pH值为6.5、凹凸棒石用量20 g/L、FeSO4用量1 g/L、铀初始质量浓度为100 mg/L、吸附时间30 min时,凹凸棒石和硫酸亚铁协同对UO2+2的吸附率达99.9%以上,经处理的含铀废水能达国标排放。凹凸棒石对UO2+2的吸附遵循Langmuir吸附等温线;凹凸棒石及其协同体系对UO2+2的吸附动力学模型符合准二级动力学方程。凹凸棒石吸附铀前后的红外光谱表明,凹凸棒石主要是通过羟基、胺基等基团与铀络合进行吸附的。  相似文献   

15.
功能化炭基磁性介孔材料的制备及其对铀的吸附性能   总被引:1,自引:1,他引:0  
以介孔氧化硅SBA-15为模板,通过纳米浇筑法在模板孔道中引入不同质量的铁源和炭源作为前驱物,经过原位聚合反应,再使用[3-(三甲氧基硅烷)丙基]脲(UPTS)和氨丙基三乙氧基硅烷(APS)有机试剂对其表面进行后嫁接改性,得到介孔结构规整有序的功能化炭基磁性介孔材料(FCMMC)。并通过红外光谱(FT-IR)、N2吸附-脱附分别表征了FCMMC的结构。考察了溶液pH值、铀初始浓度、吸附剂用量和吸附时间等因素对FCMMC吸附铀的影响。结果表明:炭基和铁基均被负载在介孔氧化硅基体上,FCMMC具有较高的比表面积和较窄的孔径分布。FCMMC吸附铀的最佳条件为:pH=6.0、铀初始浓度25mg/L、FCMMC用量40mg、吸附时间1.0h。对吸附动力学模型和吸附等温模型进行了分析,FCMMC对铀的吸附动力学过程符合准二级动力学模型,吸附等温线符合Langmuir等温线模型,最大理论吸附量为128.69mg/g。同时,使用3种不同的解吸剂对FCMMC解吸再生8次后,其对铀的吸附率均在80%以上,说明FCMMC具有良好的再生性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号