首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
The electron cyclotron resonance heating(ECRH) system with a 60 GHz/200 k W/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply(APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 k V negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 k V with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a100 k V/60 A negative cathode power supply, a dummy load and the ECRH control system. The results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.  相似文献   

2.
Power measurement is necessary for an electron cyclotron resonance heating (ECRH) system. The directional coupler method has been put forward to monitor high-power microwave from gyrotrons in real time. A multi-hole directional coupler has been designed and manufactured for the 105 GHz/500 kW ECRH system on the J-TEXT tokamak. During the design process, we established the relationships between hole parameters and coupling characteristics based on the multi-hole coupling method and small-hole coupling theory. High-power tests have been carried out. The results indicated the reasonability of the theoretical design and practicality of the fabricated directional coupler. Sources of test errors have been discussed in detail, and the influences of spurious modes on the directional couplers have been emphatically analyzed.  相似文献   

3.
A long pulse electron cyclotron resonance heating(ECRH)system has been developed to meet the requirements of steady-state operation for the EAST superconducting tokamak,and the first EC wave was successfully injected into plasma during the 2015 spring campaign.The system is mainly composed of four 140 GHz gyrotron systems,4 ITER-Like transmission lines,4 independent channel launchers and corresponding power supplies,a water cooling,control &inter-lock system etc.Each gyrotron is expected to deliver a maximum power of 1 MW and be operated at 100-1000 s pulse lengths.The No.1 and No.2 gyrotron systems have been installed.In the initial commissioning,a series of parameters of 1 MW 1 s,900 k W 10 s,800 k W 95 s and650 k W 753 s have been demonstrated successfully on the No.1 gyrotron system based on calorimetric dummy load measurements.Significant plasma heating and MHD instability suppression effects were observed in EAST experiments.In addition,high confinement(H-mode)discharges triggered by ECRH were obtained.  相似文献   

4.
In order to broaden the range of the plasma parameters and provide experimental conditions for physical research into high-performance plasma, the development of the electron cyclotron resonance heating (ECRH) system for the J-TEXT tokamak was initiated in 2017. For the first stage, the ECRH system operated successfully with one 105 GHz/500 kW/1 s gyrotron in 2019. More than 400 kW electron cyclotron (EC) wave power has been injected into the plasma successfully, raising the core electron temperature to 1.5 keV. In 2022, another 105 GHz/500 kW/1 s gyrotron completed commissioning tests which signifies that the ECRH system could generate an EC wave power of 1 MW in total. Under the support of the ECRH system, various physical experiments have been carried out on J-TEXT. The electron thermal transport in ECRH plasmas has been investigated. When ECRH is turned on, the electron thermal diffusivity significantly increases. The runaway current is elevated when a disruption occurs during ECRH heating. When the injected EC wave power is 400 kW, the conversion efficiency of runaway current increases from 35% to 75%. Fast electron behavior is observed in electron cyclotron current drive (ECCD) plasma by the fast electron bremsstrahlung diagnostic (FEB). The increase in the FEB intensity implies that ECCD could generate fast electrons. A successful startup with a 200 kW ECW is achieved. With the upgrade of the ECRH system, the J-TEXT operational range could be expanded and further relevant research could be conducted.  相似文献   

5.
In this paper,the measurement method of calorimetric power for an electron cyclotron resonance heating (ECRH) system for EAST is presented.This method requires measurements of the water flow through the cooling circuits and the input and output water temperatures in each cooling circuit.Usually,the inlet water temperature stability is controlled to obtain more accurate results.The influence of the inlet water temperature change on the measurement results is analyzed for the first time in this paper.Also,a novel temperature calibration method is proposed.This kind of calibration method is accurate and effective,and can be easily implemented.  相似文献   

6.
As a flexible auxiliary heating method,the electron cyclotron resonance heating(ECRH) has been widely used in many tokamaks and also will be applied for the J-TEXT tokamak.To meet requirements of protection and fault analysis for the ECRH system on J-TEXT,signals of gyrotrons such as the cathode voltage and current,the anode voltage and current,etc should be transmitted to the control and data acquisition system.Considering the high voltage environment of gyrotrons,isolation transmission module based on FPGA and optical fiber communication has been designed and tested.The test results indicate that the designed module has strong anti-noise ability,low error rate and high transmission speed.The delay of the module is no more than 5 μs which can fulfill the requirements.  相似文献   

7.
During initial studies of ECRH in the HL-1M tokamak,non-standard central MHD activities,such as saturated wawtooth,partially saturated sawtooth,double sawtooth,and the strong m=1 bursts have been observed while changing the heating location,the ECRH power.the plasma density,Complete suppression of sawtooth is achieved for the duration of the ECRH.when the heating power is applied on the high-fiedl side of low-density plasma,and exceeds a threshold value of power .The m=1 bursts riding on the ramp phase of sawtooth can only be excited when the ECRH locaxation activities are produced or suppressed are described.Experimental results imply that the energetic electrons generated during ECRH are responsible for the modification/or stabilization/or excitation of the instability.Near the q=1 surface,the passing electrons play the role of reducing the shear and tending to stabilize the sawtooth activity,while the barely-trapped electrons play the role of enhancing or driving an internal kink instability.  相似文献   

8.
The ERFA is a major part of the upgrade to the plasma vertical stabilisation system for JET. As well as improvements to the plasma controller, there was a requirement for a new power supply with increased voltage and current capability over its predecessor the Fast Radial Field Amplifier (FRFA). The ERFA had to be factory tested, installed at JET, power and signal connections made, all signals tested and then installed adjacent to FRFA. The connection to the JET coils had to be achieved in a planned 7-week pause in operation dedicated to this installation activity and perform to its full capability from the JET restart. The ERFA project achieved all of its aims and, following a minor upgrade, met or exceeded the performance specifications. This paper covers the site installation, signal testing, and power tests on dummy load leading to the final acceptance tests on the JET coils.  相似文献   

9.
In tokamak machines, the ECRH heating system is crucial for plasma heating and for stability control. To be reliable, an ECRH control system should be deeply integrated into the supervision and control systems of the machine, and must be interconnected to the diagnostic instruments and the power actuators of the plant. Moreover, several ECRH experiments are under investigation by the community. So, for the sake of efficiency, it should be possible to reprogram a control system on the fly and possibly from remote locations, even during experiment campaigns. This paper presents the new ECRH control system under development at the FTU tokamak. This system consists of multiple units that acquire and process data and are linked through Ethernet and dedicated fiber-optic data links, under a Linux/MARTe framework. This paper also presents open-loop operative results, both about performances of the control system and about signal processing of the diagnostics relevant to MHD control.  相似文献   

10.
Coherent magnetic fluctuations in an acoustic range of frequency have been regularly observed in low-density(n_e0.2×10~(19)m~(-3))plasmas with strong second harmonic electron cyclotron resonance heating(ECRH)on the Large Helical Device.Hard X-ray measurements indicated that energetic electrons are generated in these ECRH discharges.The magnetic fluctuations are suppressed in higher density discharges where energetic electrons are not present.The ECRH power modulation experiment indicated that the observed magnetohydrodynamic(MHD)mode has an acoustic nature rather than an Alfvenic nature.  相似文献   

11.
The design features, on-site testing, commissioning and operation are described of two new 130 kV/130 A HV power supply units serving four upgraded 130 kV/60 A positive ion neutral injectors (PINIs) on JET. Both units were factory tested at full power and pulse length into dummy resistive load. Following on-site installation, the factory tests were repeated. The transition from dummy-load testing to PINI operation required full integration of the HVPS within the overall JET control system, and rigorous testing of the co-ordinated actions and protections of all PINI power supplies (filament and arc for plasma source and negative suppression grid). The implementation of these functions is described. Extensive use was made of parasitic integrated test pulses, where the other PINIs could be operated normally, with the HVPS energised under full remote control together with the corresponding PINI plasma sources, but with the HVPS connected to dummy load. The amount of NB operation time dedicated to commissioning was thereby minimised, yet gave a high degree of confidence of readiness for HV energisation of the PINI, and first beam operation followed less than 24 h from HV connection to the PINI. The routine operating experience and performance, including load protection characteristics of the new HVPS units are also described.  相似文献   

12.
Parasitic beam tunnel oscillations have been discovered on some of the series production gyrotrons for W7-X and also on the coaxial pre-prototype gyrotron for ITER. Solutions to remedy these problems have resulted in a modified beam tunnel design, technologically close to the existing beam tunnel. The new design has successfully been tested on both the coaxial and also the f-step-tunable gyrotrons and has subsequently been implemented on one of the W7-X series-production-tubes presently undergoing factory acceptance tests in Karlsruhe.The ECRH test loads at KIT are operated under normal atmospheric conditions. Several loads have eventually failed in 1 MW long pulse experiments and KIT has therefore started to design its own loads. The first KIT-load is based on a fixed conical mirror and an aluminum cylinder coated with a lossy material for increased absorption. The new load has so far successfully been used during the acceptance tests of two 1-MW CW gyrotrons. Nevertheless a new load based on pure (uncoated) stainless steel absorbers is being developed as a backup solution for the ongoing high priority gyrotron testing.A superconducting magnet capable of rapid field changes between 4.15 and 5.67 T for frequency step-tunable gyrotrons has been procured, has demonstrated a (static) field of 7.2 T and its capability of rapid field-changes.  相似文献   

13.
A cooling system of a stationary target for the Fusion Neutronics Source (FNS) has been designed to satisfy the structural, thermal and hydraulic requirements. Two square tubes for ion beam and for cooling water were concentrically placed and the target was mounted on the top of the beam guide tube. The end plate of the outer tube was devised to be removable for easier replacement of the target. In order to test the cooling capability of the system, dummy target assemblies with electical heaters were used in the experiment of heat transfer in place of using an accelerator. Correlations of heat transfer and head loss were obtained experimentally as a function of Reynolds number. The extrapolation of the data has shown that for the present target system, about 2.3 kW is the maximum power for the beam in diameter of 15 mm. This value was sufficiently large compared with the required heat load of FNS.  相似文献   

14.
Design of the Transmission Lines for 140 GHz ECRH System on HL-2A   总被引:1,自引:0,他引:1  
A new 140 GHz/2 MW/3 s electron cyclotron resonance heating (ECRH) system composed of two units is now being constructed on HL-2A. As a part of the system, two trans- mission lines marked No.7 & 8 play the role of carrying microwave power from two gyrotrons to the tokamak port. Based on the oversized circular corrugated waveguide technology, an evacu~ ated transmission system with high power capability and high transmission efficiency is designed. Details are presented for the design of the corrugated waveguide, the layout of the proposed lines and the vacuum pumping system. Then mode conversion losses due to coupling, misalignment, bends and gaps are discussed to serve as a reference for analyzing the transmission efficiency and alignment. Finally, a dual-modes propagation case consisting of the HEll and LPn even modes is discussed.  相似文献   

15.
离子回旋波加热系统是EAST装置最重要的辅助加热工具,作为系统最核心的分系统之一,高功率射频发射机为加热等离子体提供射频波能量,对提高等离子体运行参数起着极为重要的作用。基于电路分析、传输线和波导谐振腔等相关工程理论,本文系统地总结了射频发射机系统高功率放大器输入输出回路、放大器级间匹配、寄生振荡抑制、腔体冷却等部分的设计原理和实现方法。在假负载上进行了系统测试,在设计频段内获得了1.5 MW的射频输出功率,测试结果表明系统达到了设计的技术指标。通过两轮EAST射频加热实验验证,发射机系统运行稳定可靠,满足射频加热等相关物理实验要求。  相似文献   

16.
The gyrotron is one of the most promising high-power millimeter-wave sources for electron cyclotron resonance heating(ECRH) in controlled thermal nuclear fusion experiments.In this paper,the design of a high-frequency interaction cavity of a 1 MW/140 GHz gyrotron is described in detail.The cavity is designed by using eigen mode analysis and radio frequency(RF) behavior calculation.Rounded transitions at the input and output tapers are designed for reducing mode conversion.With the obtained cavity structure,non-linear self-consistent equations are adopted to calculate its output power and efficiency.A particle-in-cell(PIC) method is used to simulate the beam-wave interaction process for obtaining the resonant frequency and output power of the cavity.The PIC simulation results match considerably well with the results obtained by the non-linear self-consistent calculation.The cavity is currently under construction and will be integrated with other components for overall testing.  相似文献   

17.
《核技术(英文版)》2016,(2):106-114
This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a robust nonlinear controller, is designed to control the pressurizedwater reactor power. The reactor core is simulated based on the point kinetics equations and six delayed neutron groups. Considering neutron absorber poisons and regarding the limitations of the xenon concentration measurement, a sliding mode observer is designed to estimate its value, and finally, a sliding mode control based on the sliding mode observer is presented to control the core power of reactor. The stability analysis is given by means Lyapunov approach; thus, the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications, and moreover,the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed observerbased controller in terms of performance, robustness and stability.  相似文献   

18.
Ion cyclotron wave resonance heating(ICRH) is one of the most important auxiliary methods to heat plasma in the Experimental Advanced Superconducting Tokamak(EAST). Several megawatts of power is transmitted through separate coaxial lines and coupled with the plasma through arrays of loop antennas. The parameters of the ICRH system, including the injected power and phasing between antenna straps, are critical to the coupling efficiency of the power as well as the resulting impact on the heating efficiency. In this paper, we present a system for feedback control of the phase between the current straps and the ICRH power on EAST. The feedback control system was tested using both a matched dummy load and a plasma load, and it successfully maintained stable operation in the 2016 EAST campaign. Good control of the injected power and wave phases was achieved during edgelocalized mode operation.  相似文献   

19.
基于四极管的电子回旋共振加热负高压脉冲电源是支持回旋管工作的关键组件,对稳态误差精度和响应速度等性能有较高的要求。分析了电源系统的工作原理,给出了数学模型。针对四极管的非线性特点和电源的控制要求,将智能控制方法与电源技术相结合,提出积分分离模糊控制器的控制策略。通过仿真实验,与传统PID控制策略进行比较,结果表明,该控制器具有抑制超调、自适应自调节的功能,为实现高性能的负高压脉冲电源提供了一种新的控制策略,同时也为智能化数字控制的实现打下基础。  相似文献   

20.
Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV has been achieved in relatively low density plasmas. When the strong ICRF heating is applied, it is observed that the high frequency and the low frequency fluctuations are excited and suppress the increase of the plasma parameters. Recently, a new high power gyrotron system has been constructed and the ECRH power in plug extends up to 370 kW. The improvement of the confinement due to the formation of the potential in the axial direction and the strong radial electric field shear has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号