首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or burning of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets.Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.  相似文献   

2.
This paper summarizes key 2006 news events in the development of fusion energy. Highlights include status of ITER project, progress on construction of NIF, and status of US fusion budget for Fiscal Year 2007.  相似文献   

3.
This paper summarizes key 2005 news events in the development of fusion energy. Highlights include evolution and resolution of ITER siting decision, progress on construction of NIF, and passage of U.S. fusion budget for Fiscal Year 2006.  相似文献   

4.
This is Volume 1 of the report of a panel established by the U.S. Department of Energy Fusion Energy Sciences Advisory Committee (FESAC) and submitted in July 2005. The panel was charged to answer the following questions: What are the unique and complementary characteristics of each of the major U.S. fusion facilities? How do the characteristics of each of the three U.S. fusion facilities make the U.S. toroidal research program unique as a whole in the international program? How well do we cooperate with the international community in coordinating research on our major facilities and how have we exploited the special features of U.S. facilities in contributing to international fusion research, in general, and to the ITER design specifically? How do these three facilities contribute to fusion science and the vitality of the U.S. Fusion program? What research opportunities would be lost by shutting down one of the major facilities?  相似文献   

5.
The 2002 Fusion Summer Study was conducted July 8–19, 2002, in Snowmass, CO, and carried out a critical assessment of major next steps in the fusion energy sciences program in both magnetic fusion energy (MFE) and inertial fusion energy (IFE). The conclusions of this study were based on analysis led by over 60 conveners working with hundreds of members of the fusion energy sciences community extending over eight months. This effort culminated in two weeks of intense discussion by over 250 U.S. and 30 foreign fusion physicists and engineers present at the 2002 Fusion Summer Study. This is the Executive Summary of the study report. Details are posted at http://web.gat.com/snowmass  相似文献   

6.
During the past several decades magnetic fusion has made outstanding progress in understanding the science of fusion plasmas, the achievement of actual fusion plasmas and the development of key fusion technologies. Magnetic fusion is now technically ready to take the next step: the study of high gain fusion plasmas, the optimization of fusion plasmas and the continued development and integration of fusion technology. However, each of these objectives requires significant resources since the tests are now being done at the energy production scale. This paper describes a modular approach that addresses these objectives in specialized facilities that reduces the technical risk and lowers cost for near term facilities needed to address critical issues.  相似文献   

7.
The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.Presented to the Magnetic Fusion Advisory Committee (La Jolla, California, December 4, 1986)  相似文献   

8.
Assuming significant technical success in the ITER project by the year 2015, it is likely that governments will want to develop a more comprehensive plan for DT tokamak fusion power commercialization. To provide a glimpse into many of the related issues, we construct conversations between the director of the U.S. fusion program and three specialists key to commercial fusion success: an environment and safety regulator, an environmentalist, and an electric generation investor. The insights from these imagined conversations will hopefully be of value as tokamak fusion power proponents plan beyond ITER.  相似文献   

9.
The basic fusion driver requirements of a toroidal materials production reactor are considered. The tokamak, stellarator, bumpy torus, and reversed-field pinch are compared with regard to their demonstrated performance, probable near-term development, and potential advantages and disadvantages if used as reactors for materials production. Of the candidate fusion drivers, the tokamak is determined to be the most viable for a near-term production reactor. Four tokamak reactor concepts (TORFA/FED-R, AFTR/ZEPHYR, Riggatron, and Superconducting Coil) of approximately 500-MW fusion power are compared with regard to their demands on plasma performance, required fusion technology development, and blanket configuration characteristics. Because of its relatively moderate requirements on fusion plasma physics and technology development, as well as its superior configuration of production blankets, the TORFA/FED-R type of reactor operating with a fusion power gain of about 3 is found to be the most suitable tokamak candidate for implementation as a near-term production reactor.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing from its 1982 version (except for Tables II and III and Fig. 1), explaining the fact that some of the material is dated.  相似文献   

10.
数据融合旨在将来自多传感器或多源的信息进行协同分析,通过一系列的融合处理,从而得出更为准确可信的结论。概述了数据融合的研究近况,从系统的角度提出了数据融合的定义,初步探讨了其理论模型。在介绍禁核试核查背景的基础上,给出了禁核试核查数据融合的基本概念,理论框架及研究内容。  相似文献   

11.
This panel was set up by the U.S. Department of Energy's Fusion Energy Sciences Advisory Committee in response to a request from the department to prepare a strategy for the study of burning fusion plasmas. Experimental study of a burning plasma has long been a goal of the U.S. science-based fusion energy program. There is an overwhelming consensus among fusion scientists that we are now ready scientifically, and have the full technical capability, to embark on this step. The fusion community is prepared to construct a facility that will allow us to produce this new plasma state in the laboratory, uncover the new physics associated with the fusion burn, and develop and test new technology essential for fusion power. Given this background, the panel has produced a strategy to enable the United States to proceed with this crucial next step in fusion energy science. The strategy was constructed with awareness that the burning plasma program is only one major component in a comprehensive development plan for fusion energy. A strong core science and technology program focused on fundamental understanding, confinement configuration optimization, and the development of plasma and fusion technologies essential to the realization of fusion energy. The core program will also be essential to the successful guidance and exploitation of the burning plasma program, providing the necessary knowledge base and scientific workforce.  相似文献   

12.
Presentations from a Fusion Power Associates symposium, The Fusion Energy Option, are summarized. The topics include perspectives on fossil fuel reserves, fusion as a source for hydrogen production, status and plans for the development of inertial fusion, planning for the construction of the International Thermonuclear Experimental Reactor, status and promise of alternate approaches to fusion and the need for R&D now on fusion technologies.  相似文献   

13.
This is the July 1996 report of a subpanel of the US Department of Energy Fusion Energy Sciences Advisory Committee (FESAC), charged with reviewing the present status of fusion alternative concept development and the prospects for alternative concepts not only as fusion power systems but also the scientific contributions of alternative concept research to the fusion energy sciences program and to plasma science in general.  相似文献   

14.
This paper summarizes key 2004 news events in the development of fusion energy. Highlights include lack of progress on negotiations to site the International Thermonuclear Experimental Reactor (ITER), recent scientific achievements and status of U.S. fusion budget.  相似文献   

15.
核聚变研究50年   总被引:7,自引:0,他引:7  
分析了国内外核聚变研究成果现状和发展的趋势 ,对国民经济发展过程中的能源需求作了预测 ,对中国的聚变能源战略和历史机遇 (经济、技术体系、地位 )作了讨论 ,介绍了聚变 裂变混合堆并提出了发展聚变 裂变混合堆的总体设想、研究内容和预期目标。  相似文献   

16.
托卡马克(Tokamak)聚变装置中子学分析中,聚变中子源描述是重要的输入参数,其准确性直接影响分析结果的可靠性。通过分析ITER和欧洲聚变示范堆(EU DEMO)中子学分析中所采用的聚变中子源模型,提出了一种完整描述Tokamak中L-mode、H-mode等离子体的D-D、D-T聚变中子源的数值模型。在中国聚变工程实验堆(CFETR)的工程集成设计平台上,编写了基于蒙特卡罗算法的程序SCG求解该数值模型,实现了读取(零维)等离子体参数、输出可供典型中子学软件MCNP直接读取的中子源定义文件的功能。以CFETR氦冷球床包层的中子学分析模型为基准,在相同的L-mode等离子体D-T聚变工况下,相较于采用EU DEMO源子程序,采用本模型计算得到的中子壁负载差异最大值为2.02%,包层氚增殖率差异为0.18%,全堆能量增益因子的差异为0.23%。结果表明,本模型与其他源描述的差异较小,可应用于CFETR的中子学分析。  相似文献   

17.
The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. There is wide agreement that many approaches will work and will produce fuel for five equal-sized LWRs, and some approach as many as 20 LWRs at electricity costs within 20% of those at today's price of uranium ($30/lb of U3O8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories, or just fusion breeders, will have safety characteristics more like pure fusion reactors and will support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and will support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type, a point of view not agreed upon by everyone. There is, however, wide agreement that, to meet the market price for uranium which would result in LWR electricity within 20% of today's cost with either blanket type, fusion components can cost severalfold more than would be allowed for pure fusion to meet the goal of making electricity alone at 20% over today's fission costs. Also widely agreed is that the critical-path-item for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices forces other more costly choices.  相似文献   

18.
A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about $1.4 billion (1982 dollars) in either case. (The direct costs are estimated at $1.1 billion.) The production cost is calculated to be $22,000/g for tritium and $260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells electricity, and (2) there is a risk of not meeting the design goals.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing of its 1982 version, explaining the fact that some of the material is dated.  相似文献   

19.
It is widely believed that the use of superconducting magnets in next-step fusion experiments is driven only by the reactor relevance of low circulating power in a fusion plant. However, there is a broad range of fusion magnet applications in which the use of superconducting magnets in near-term experiments will reduce the capital cost of an experiment, along with further reductions in the operating cost. This claim extends to Proof-of-Principle and Proof-of-Performance experiments for Steady-State and Spherical Tori, Compact Stellarators, Spheromaks, and Heavy Ion Fusion Drivers.  相似文献   

20.
Two strategic decisions facing the U.S. fusion program are described. The first decision deals with the role and rationale of the tokamak within the U. S. fusion program, and it underlies the debate over our continuing role in the evolving ITER collaboration (mid-1998). The second decision concerns how to include Inertial Fusion Energy (IFE) as a viable part of the national effort to harness fusion energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号