首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to develop new PET myocardial perfusion imaging agent, a novel18F labeled phosphonium cation: (3-([18F]fluoromethyl)benzyl) tris (2, 6-dimethoxyphenyl) phosphonium salt, 18F-2, had been designed and prepared. Biological evaluation of18F-2 had been performed in Kunming normal mice.18F-2 was obtained by a simple one-pot method and the radiochemical yield was (31±3)%. The total radio-synthesis time was less than 60 min and the radiochemical purity of final radiotracer was more than 95%. The biodistribution of18F-2 displayed a high heart uptake and good retention. The heart uptake of18F-2 at 5 and 60 min post-injection were (53.88±7.45)%ID/g and (23.93±3.28)%ID/g, respectively.18F-2 exhibited low radio-accumulation in non-target tissues and rapid clearance in liver, lung and blood. The heart to liver, heart to lungs and heart to blood ratio values were 3.99, 3.80 and 9.17, respectively. The results indicated that18F-2 could be as a promising myocardial perfusion imaging agent for PET imaging.  相似文献   

2.
正电子类氨基酸显像剂是18F-氟代脱氧葡萄糖(18F-Fluorodeoxyglucose,18F-FDG)在临床肿瘤PET显像应用中的重要补充。针对6-18F-氟-L-多巴(18F-FDOPA)前体制备及标记过程的复杂性,本研究设计合成了一种新型18F-标记的氨基酸类肿瘤PET显像剂3-O-(2-18F-氟乙基)-L-多巴(3-O-(2-18F-fluoroethyl-L-DOPA,18F-FEDOPA),并对其内生物分布及肿瘤PET显像进行了评价。以L-多巴(L-DOPA)为原料经多步反应合成标记前体化合物-N-叔丁氧羰基-(3-O-甲苯磺酸酯乙基-4-O-叔丁氧羰基)-L-多巴甲酯,通过18F-亲核取代反应实现放射性标记,经半制备高效液相色谱纯化、盐酸水解、NaOH中和后得到18F-FEDOPA注射液。放化合成时间为90 min,放化产率(33±6)%(n=10,衰减校正),放射性比活度为55 GBq/μmol,放化纯度>99%,4 h后测定放化纯度>95%,稳定性良好。小鼠体内生物分布表明,18F-FEDOPA主要经肾脏代谢,心脏和脑组织摄取值较低,骨骼摄取随时间无明显变化。microPET/CT显像显示,18F-FEDOPA在H22和S180肿瘤组织有明显摄取;与18F-FDG相比,18F-FEDOPA在注射60 min时肿瘤与心(或脑)的比值高。因此,18F-FEDOPA有望成为一种新型氨基酸代谢类肿瘤PET显像剂。  相似文献   

3.
18F-fluoro-L-dihydroxyphenylalanine (18F-FDOPA) as a dopamine neurotransmitter imaging agent has been widely used for diagnosis and therapy evaluation of Parkinson's disease, brain tumors and neuroendocrine diseases with positron emission tomography (PET) imaging in clinical setting and research. To meet the increasing clinical demand in oncology and neurology, a routine protocol for the automated synthesis of18F-FDOPA with a disposable cassette system on an imported multifunctional synthesizer was studied and discussed.18F-FDOPA was automatically synthesized via a multiple-step reaction, including fluorination, reduction, iodization alkylation and hydrolysis, following purification by using a semi-preparative high-performance liquid chromatography (HPLC) system which was built in the multifunctional synthesizer. After HPLC purification, the purified18F-FDOPA solution was collected and passed through a sterilizing filter into a collection bottle. The final18F-FDOPA injection was obtained for quality control (QC) determination. The QC indexes of the final products were detected: the injection was colorless and transparent, pH value was at 4 to 5.5, radiochemical purity >98%, radionuclide purity >99%, specific activity >1.9 GBq/μmol, K2.2.2 content <50 mg/L, methanol content <0.01%, alcohol content <0.01%, dichloromethane content <0.01 mg/L, dimethylformamide content <15 mg/L, bacterial endotoxin test <0.100 EU/mL, sterility test 0 cfu/mL,and abnormal toxicity test was negative. PET/CT imaging of rats was performed by intravenous injection of18F-FDOPA half an hour after the intraperitoneal injection of carbidopa, PET/CT scan was performed after 100 min post-injection. The imaging of18F-FDOPA showed symmetry high uptake in the bilateral striatum of normal rats. The decay-corrected radiochemical yield of18F-FDOPA from the18F-fluoride was (63.1±3.8)% (n=10) at the end of synthesis (EOS), the radiochemical purity was no less than 98%, and the total radiosynthesis time was within 80 min. The quality control results demonstrated that the quality indexes of the final injection solution met the relevant requirements of radiopharmaceutlcals, which were well-suited for clinical application. An efficient and high reproducible automatic method for the radiosynthesis of18F-FDOPA with high radiochemical yields and good radiochemical purity is obtained and performed via a multi-step reaction on the multifunctional synthesizer.18F-FDOPA can be used for animal and human PET imaging.  相似文献   

4.
99Tcm-sestamibi is typically used as amyocardial perfusion imaging agent for SPECT, however, the high uptake of liverand lung compromise the diagnostic accuracy. PET has higher spatial resolutionand quantitative measurement of myocardial tracer uptake. The lipophiliccationic compound, (4-[18F]fluorophenyl)triphenylphosphoniumion (18F-TPT)was synthesized as a potential positron emission tomography (PET) myocardialperfusion agent, biodistribution studies in the NH rats and Micro PET/CTimaging studies in the SD rats were performed. Total synthesis time was about 1h and the uncorrected synthesis yield was 2.5%, radiochemical purity was higherthan 99.5%, the product had good stability at room temperature. Biodistributiondata in rats showed high levels of accumulation in the heart with stableretention and rapid blood clearance, Heart-to-liver ratios at 30, 60, 90,and120 min were 33.1, 14.8, 25.7 and 17.3, respectively; Micro PET/CT imagingin the SD rat showed intense cardiac uptake and non-target tissues as liver,lung uptake were washed out quickly. The result show that 18F-TPT may have potential as amyocardial perfusion imaging agent for PET.  相似文献   

5.
本文通过双功能偶联剂5-(三正丁基锡)-3-吡啶甲酸-N-琥珀酰亚胺酯(SPC)将131I标记到小分子融合多肽VP2上,研究了131I标记多肽VP2的体内外稳定性及在正常小鼠体内的代谢与分布。结果表明,该标记药物室温下放置48h后放化纯度仍可达97%,其在小鼠体内可通过胃肠道快速代谢,在甲状腺的摄取较低。用间接标记法得到的131I-SPC-VP2在体内外有良好的稳定性。  相似文献   

6.
朱华  刘特立  王风  蒋金泉  韩雪迪  杨志 《同位素》2019,32(6):382-387
目的:利用医用回旋加速器固体靶系统制备PET核素64Cu,进行前列腺特异性膜抗原(PSMA)分子探针DKFZ-PSMA-617(PSMA-617)研究。建立64Cu-PSMA-617标记化合物生产及初步快速质量控制方法,为PSMA高表达肿瘤的PET显像及放射性免疫导向手术提供新型探针。方法:通过优化反应条件,实现固体靶制备的64Cu对PSMA-617的快速标记与纯化。利用放射性薄层层析分析(Radio-thin layer chromatography, Radio-TLC)和放射性高效液相色谱(Radio-high performance liquid chromatography, Radio-HPLC),进行64Cu-PSMA-617放化纯和稳定性检测。参考2015年《中国药典》进行64Cu-PSMA-617的初步质量控制。通过静脉注射1.85 MBq的64Cu-PSMA-617至Balb/c小鼠体内,进行该探针的体内分布研究。结果:64Cu-PSMA-617的标记率>96%, 放化纯度>98%,标记化合物在多种缓冲液中放置24 h依然保持原有放化纯度。经过尾部静脉注射到小鼠体内后, 放射性主要积累在肝脏/肾脏部位,符合该探针在生物体内的代谢行为。结论:本研究实现了64Cu-PSMA-617探针的快速标记并建立了其质量控制方法,64Cu-PSMA-617具有较好的理化性质,体内分布研究确认了其具有较好的生物学性质,该研究结果可为其进一步用于前列腺癌诊疗的临床转化奠定基础。  相似文献   

7.
18F-6-Fluoride-L-DOPA (18F-DOPA) has an important value in the imaging diagnosis of neuroendocrine tumors. In this study, we used homemade Fluoride-module to synthesis18F-DOPA and evaluate its clinical imaging.18F-DOPA was synthesized by direct nucleophilic reaction with 6-boric acid-dimethoxy-L-DOPA as precursor, Cu(OTf)2(py)4 as catalyst, and hydrolysis by hydriodic acid. Quality control and the in vitro stability were preformed. The18F-DOPA was confirmed PET imaging of neuroendocrine neoplasms and control. It took 60 minutes from 18F ions to 18F-DOPA, no corrected efficiency was (10.0±2.3)% (n=6), radiochemistry purity was over 99%. It could got 7.4 GBq of18F-DOPA once time. The trace of ascorbic acid or ethanol could prevent radiolysis of 18F-DOPA. The striatum was seen at18F DOPA imaging. The radioactivity were mainly extracted through kidney and urine. A positive lesion in pancreatic in patient with neuroendocrine tumor.18F-DOPA was synthesized by direct nucleophilic reaction with homemade Fluoride-module. It could got good repeatability and high quality for clinical used.  相似文献   

8.
李立强  王风  刘特立  朱华  杨志 《同位素》2018,31(3):188-197
124I是一种半衰期较长的正电子核素(T1/2=4.2 d),由于其生产工艺要求较高、复杂的衰变纲图以及辐射出的超高能量γ射线,在过去很长一段时间里限制了其临床应用。如今,随着回旋加速器生产核素技术的进步及正电子发射型计算机断层显像(PET)技术在肿瘤及药物药代动力学等研究中应用不断拓展,使得124I核素标记的化合物成为具有应用价值的核医学PET分子探针。本文主要对124I正电子核素的核性质、生产方式、常规标记方法以及在PET分子影像方面的临床应用进行阐述。  相似文献   

9.
对64 Cu标记超顺磁性氧化铁纳米粒子SPION-dopa-PEG-DOTA/RGD的标记及纯化条件进行探索,并根据其在小鼠体内的生物分布研究结果,揭示其主要的代谢方式。通过对标记过程中配体浓度、温度、时间等条件的改变,探究64 Cu标记SPION-dopa-PEG-DOTA/RGD的最优条件;并采用二乙基三胺五乙酸(DTPA)螯合标记混合物中游离的64 Cu,经PD-10柱纯化后得到放化纯较高的标记物;采用快速薄层层析法测定标记物的标记率和放化纯;分别测定了标记物的体外稳定性和脂水分配系数;将64 Cu标记的氧化铁纳米粒子经尾静脉注射到正常鼠的体内,分别于注射后不同时间点取各脏器,称重、测定放射性计数率,计算每克组织的百分注射剂量率(%ID/g)。经条件优化后得到的64 Cu-SPION-dopa-PEG-DOTA/RGD的标记率为63%,PD-10柱纯化后放化纯大于95%,水溶性良好,且放化纯在标记后12h内在磷酸盐缓冲液和人血清白蛋白中表现出了较高的稳定性;动物体内生物分布实验显示,该标记物在小鼠体内主要经肝脏代谢,肾脏排泄,血液中放射性清除较快。该标记物可用于后续的PET/MRI双模态显像的研究。  相似文献   

10.
由外伤或肿瘤骨转移造成的隐匿性骨折和愈合情况的准确诊断对制定合适的治疗方案具有非常重要的意义。为考查18F-NaF PET显像用于骨折诊断的诊断效能,本研究制备了18F-NaF注射液,并对其进行了质量控制和稳定性研究,然后建立新西兰兔骨折动物模型,模型建立约2周后进行了18F-NaF PET显像和99Tcm-亚甲基二磷酸盐(99Tcm-MDP)SPECT显像的自身对照实验,并对显像效果进行了比较。结果表明:18F-NaF的产量大于37 GBq,各项检验结果均符合质控要求,40 ℃下放置8 h和30 ℃下放置10 h所有检验结果均无明显变化;18F-NaF PET和99Tcm-MDP SPECT两种显像方式均可见全身骨骼,骨折部位呈明显放射性浓聚,但18F-NaF给药后30 min即可进行PET显像,骨折部位显示更为清晰,骨折部位与对侧正常骨骼的放射性摄取比(T/NT)明显高于99Tcm-MDP,而99Tcm-MDP需在给药后2 h才能进行SPECT显像。本研究表明18F-NaF PET对骨折的显像性能优于99Tcm-MDP,可明显提高检查流通量和诊断效能。  相似文献   

11.
为研究68Ga标记的成纤维细胞活化蛋白抑制剂(68Ga-FAPI-04)在正常小鼠和胶质瘤裸鼠模型体内的生物学分布及micro-PET显像,以DOTA修饰的成纤维活化蛋白抑制剂为前体合成68Ga-FAPI-04。放射性HPLC测定其标记率,考察放化纯度及体外稳定性,通过测定68Ga-FAPI-04脂水分配系数评估其水溶性。将20只ICR小鼠随机分为5组,尾静脉注射3.7 MBq 68Ga-FAPI-04后5、15、30、60、120 min后处死并取出各脏器,称重并测定放射性计数,计算各组织器官的放射性摄取率。建立U87MG胶质瘤荷瘤鼠模型,进行生物分布及micro-PET显像研究。结果表明,68Ga-FAPI-04的标记率为97.38%±1.32%(n=3),放化纯度为100%,体外稳定性好,亲水性强。ICR正常小鼠生物分布实验显示,68Ga-FAPI-04血液清除快,肾脏为主要排泄器官,脑部放射性摄取低。U87MG荷瘤裸鼠生物分布及micro-PET均显示肿瘤部位有较高的放射性摄取率,68Ga-FAPI-04注射后90 min时肿瘤部位放射性摄取率达到(2.50±0.00)%ID/g。注射后30、60、90、120 min时,肿瘤与正常脑的肿瘤本底比(tumor-to-background ratio, TBR)分别为(6.26±0.09)、(5.06±0.02)、(5.54±1.47)、(5.51±0.03)。研究表明,68Ga-FAPI-04制备简易方便、标记率高、体外稳定性好,主要通过肾脏排泄,在胶质肿瘤模型中具有较好的肿瘤靶向性,micro-PET显像清晰,是潜在的脑肿瘤显像剂。  相似文献   

12.
使用进口氟多功能合成模块TRACERlab FX2 N合成器自动化合成β-淀粉样蛋白(β-amyloid protein, Aβ)正电子显像剂18F-AV45,并进行临床验证。在TRACERlab FX2 N合成器上,以AV105为前体,与18F-发生亲核反应后,依次经酸水解及碱中和,经过高效液相色谱法(high performance liquid chromatography, HPLC)分离并纯化后获得18F-AV45,进行质量控制。并用制备的18F-AV45对1例阿尔兹海默病(Alzheimer disease, AD)患者及1例健康对照者行18F-AV45 PET/CT扫描。结果表明,18F-AV45合成时间为80 min,不校正合成效率为(17.02±1.52)%(n=6),产品放化纯度大于95%。临床应用显示18F-AV45在AD患者大脑皮层摄取弥漫增高,提示大脑皮层β淀粉样蛋白沉积;在健康对照者大脑皮层未见明显摄取,即大脑皮层未见β淀粉样蛋白沉积。TRACERlab FX2 N合成器自动化合成18F-AV45简便快捷,重复性好,制备出的18F-AV45产品质量符合临床要求,该合成方法可为18F-AV45模块合成提供参考。  相似文献   

13.
为合成一种新型18F-标记的前列腺特异性膜抗原18F-JK-PSMA-7,经亲核取代、酸水解、高效液相色谱分离、固相萃取等4步合成18F-JK-PSMA-7,并测定其质量和体外稳定性,计算其脂水分配系数,通过动物实验评价其生物安全性和生物分布特性,同时对1例健康志愿者和3例前列腺癌患者行PET/CT显像。结果表明,18F-JK-PSMA-7的合成时间为45 min,合成产率为(31.0±2.5)%(未衰减校正,n=3),放化纯度>99%,体外稳定性良好,常温放置3个半衰期放化纯度仍>95%,脂水分配系数logP=-3.56±0.13,其他质控结果满足临床要求。生物分布实验显示其在体内稳定性较好,在所测时间点肌肉和骨骼几乎无摄取,药物在膀胱内的摄取较高,证明其经泌尿系统代谢。对1例健康志愿者和3例前列腺癌患者行PET/CT显像发现:1例健康志愿者主要在唾液腺、泪腺、下颌下腺、肝脏、脾脏和肠道、膀胱等器官有生理性高放射性摄取,3例前列腺癌患者前列腺病灶和转移灶都有浓聚,...  相似文献   

14.
为研究国产11C-多功能合成模块经LOOP环法合成放射性药物[N-甲基-11C]胆碱(11C-Choline,11C-CH)的合成方法,对碱当量、溶剂效应及前体量等影响因素进行研究,优化LOOP环法合成11C-CH的合成工艺。11C-CH的优化条件:前体量为60~150 uL,无碱无溶剂,室温与11C-CH3I反应。此条件下11C-CH的合成效率为(72.16±2.96)%(n=19, 11C-CH3I未校正效率),产品的放化纯度均大于95%,产量为(7.59±1.54) GBq(n=19)。国产11C-多功能合成模块LOOP环法合成11C-CH与C18柱固相法进行比较表明,LOOP环可以多次重复利用,降低生产成本,提高合成效率,实现稳定、全自动化合成11C-CH,产品满足临床需求。  相似文献   

15.
本文以11 C-Triflate-CH3为甲基化试剂,使用国产模块PET-CM-3H-IT-I合成11 C标记化合物雷氯必利(11 C-Raclopride),研究其合成过程中的碱量、溶剂、反应温度、前体量及产品淋洗条件对合成效率的影响,优化11 C-Raclopride的合成条件。优化后的合成条件为:以0.2mL丙酮为溶剂,前体浓度1.5~3.0g/L,反应温度为室温(25℃),碱量0.30~1.25eq,11 C-Raclopride的合成效率(64.82±4.74)%(n=46,以11 C-Triflate-CH3计校正效率),产品的放化纯度大于97%,比活度为(423.61±13.43)GBq/g,从收集11 C-CO2至得到11 C-Raclopride终产品的总合成时间为23 min,产量(6.9±0.87)GBq(n=46)。通过优化合成工艺,实现了稳定性和重复性良好的全自动化合成11C-Raclopride,且产品满足临床使用需要。  相似文献   

16.
研究了乏氧显像剂18F-硝基咪唑(18F-FMISO)的全自动化合成方法,分析了影响18F-FMISO放化稳定性的因素。采用回旋加速器生产出来的18F-,传输到住友CFN-MPS200合成装置中,经QMA柱捕获后淋洗到反应管,两次干燥除去水分,再与乙腈溶解的10 mg 1-(2’-硝基-1’-咪唑基)-2-氧-四氢呋喃基-3-氧-甲苯磺酰基-丙二醇(NITTP)进行亲核取代反应。反应液用盐酸水解后加缓冲溶液中和,进入制备型高效液相进行分离。流动相采用φ=15%的乙腈水溶液,流速3 mL/min,保留时间11 min。用旋转蒸发仪脱除溶剂,再用生理盐水溶解加入稳定剂得到18F-FMISO注射液。考察了不同活度、稳定剂、旋蒸温度对产品放化稳定性的影响,结果表明,不校正合成效率(EOS)为(45±5)%(n=20),合成时间50 min,在抗坏血酸钠做为稳定剂的情况下,6 h后产品的放化纯度为95%;而抗坏血酸和乙醇不能在50 ℃以上作为稳定剂。18F-FMISO可以用CFN-MPS200合成模块全自动化合成,产品收率较高,工艺稳定,18F-FMISO在弱碱溶液中稳定性好,为肿瘤的乏氧显像提供了临床便利。  相似文献   

17.
将具有肿瘤靶向性的精氨酸-精氨酸-亮氨酸(RRL)多肽与双功能螯合剂MAG3相连,摸索其螯合99Tcm的适宜标记条件并评价探针的体外稳定性。标记利用SnCl2还原法进行99Tcm标记,对影响标记的主要变量因素分别进行探究以获得适宜标记条件,采用纸层析法测定标记率和放射化学纯度。实验所得MAG3-RRL纯度为98.94%,适宜标记条件下,标记率为93.67%±1.10%,纯化后放射化学纯度为94.32%±0.19%(n=3)。99Tcm-MAG3-RRL在生理盐水和50%牛血清白蛋白(BSA)中放置,6 h内放射化学纯度均大于90%(n=3),在半胱氨酸溶液中的最高置换率为0.57%±0.21%,生理盐水对照为0.41%±0.04%(n=3,P>0.05)。99Tcm-MAG3-RRL的脂水分配系数为lg P=-0.15±0.01(n=3)。结果表明:MAG3可成功连接RRL多肽,并能进一步提高标记率;探针制备方法简单快速,体外稳定性好,为进一步的生物学实验提供了良好的基础。  相似文献   

18.
To study a simple and rapidautomated synthetic technology of 11C-acetate(11C-AC), automatedsynthesis of 11C-ACwas performed by carboxylation of MeMgBr/tetrahydrofuran (THF) on apolyethylene loop with 11C-CO2,followed by hydrolysis and purification on solid-phase extraction cartridgesusing a 11C-Choline/Methioninesynthesizer made in China. A high and reproducible radiochemical yield of above40% (decay corrected) was obtained within the whole synthesis time about 8 minfrom 11C-CO2.The radiochemical purity of 11C-ACwas over 95%. The novel, simple and rapid on-column hydrolysis-purificationprocedure should adaptable to the fully automated synthesis of 11C-AC at several commercialsynthesis module. 11C-ACinjection produced by the automated procedure is safe and effective, and can beused for PET imaging of animals and humans.  相似文献   

19.
The optimization for high synthesis yield was designed with 11C-Triflate-CH3I as methylation agent for dopamine transporter imaging agent of11C-β-CFT. The influence factors of the synthesis process were discussed, and the optimum synthetic conditions were established. In the paper, the study showed that the amount of precursor, the irradiation time, eluated condition, the reaction solvent etc could effect the synthetic efficiency.11C-β-CFT was automatic synthesized on PET-CM-3H-IT-Ⅰ with the optimum process conditions as the irradiation time 10-24 minutes, 0.5-1.0 g/L of precursor in 0.2 mL acetone: acetonitrile(1∶1, V∶V) and room temperature. We obtained a radiochemical yield of (76.93±6.49)% (n=76,11C-Triflate-CH3 EOB). The radiochemical purity of final products were over 97%. The specific activities of final products were over (56.26±1.55) TBq/g. It took 16 minutes from11C-CO2 to11C-β-CFT and the radio activity of11C-β-CFT were (8.07±1.94) GBq (n=76). By optimization of the technological conditions, the target product was suitable for clinical, the synthetic process was reliable and full automated, the product yield was improved and the residual problem of Sep-Pak C18 was resloved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号