首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the 1980s, a series of integral experiments was conducted in FCA-IX assemblies with systematically changed neutron spectra covering from the intermediate to fast ones. The experiments provide systematic data of central fission rates for TRU nuclides containing minor actinides, 237Np, 238Pu, 239Pu, 242Pu, 241Am, 243Am, and 244Cm. Regarding the fission rate ratios relative to 239Pu, benchmark models had been recently developed for validation of nuclear data for the TRU's fission cross sections. In this paper, the latest major nuclear data libraries, JENDL-4.0, ENDF/B-VII.1, and JEFF-3.2, are compared on the benchmark models. For the libraries, the analyses by a Monte Carlo calculation code show obvious overestimations particularly for the fission rate ratios of 244Cm to 239Pu. Additionally, a large discrepancy about by 20% between the libraries is revealed for the fission rate ratio of 238Pu to 239Pu measured in the intermediate neutron spectrum. The causes of discrepancies are furthermore clarified by sensitivity analyses.  相似文献   

2.
A process for the immobilization of intermediate level waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material has been developed. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Non-active trials performed using Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, were performed at PNNL which confirmed the wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu/241Am loaded ceramic at 313 K/28 days gave normalized mass losses of 1.2 × 10−5 g m−2 and 2.7 × 10−3 g m−2 for Pu and Cl, respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD spectra after the samples had experienced an α radiation fluence of 4 × 1018 g−1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.  相似文献   

3.
The two kinds of nuclear waste glass with similar composition, a 238Pu-doped and nonradioactive waste glass, were leached under the ISO-test conditions at temperature between 23 and 90°C. An activation energy of 22±10kJ/mole was obtained from the initial leach rates of Pu, which was much lower than the 78±9kJ/mole obtained from those of Si, Na, Sr and Cs, It is suggested that in the initial stages of leaching. Pu is not released from the waste glass with the same mechanisms as the releases of Si, Na, Sr and Cs, but the dissolution of hydrous plutonium dioxide PuO2·xH2O formed on the glass surface becomes predominant. In the long duration tests (<32d), the release of Pu appears to be affected by the solubility of PuO2·xH2O remaining in the leached surface layers.  相似文献   

4.
《Annals of Nuclear Energy》2005,32(10):1023-1031
Experimental determination of 238Pu in 237Np samples irradiated in the experimental fast reactor JOYO was done as part of the demonstration of 238Pu production from 237Np in fast reactors within the framework of the protected Pu production project, which aims at reinforcement of proliferation resistance of Pu by increasing the 238Pu isotopic ratio. 238Pu production amount in the irradiated 237Np samples was determined by a radioanalytical technique. Aspects of 238Pu production were examined on the basis of the present radioanalysis. The 238Pu production amount depends on the neutron spectrum which can range from that of a typical fast reactor to a nearly epi-thermal spectrum. It is concluded that the fast reactor has not only high potential for use in protected Pu production, but also as an incinerator for excess Pu.  相似文献   

5.
The present study focuses on the effect of minor actinides (MAs) addition into the FBR blanket as ways of increasing fraction of even-mass-number plutonium isotopes, especially 238Pu, aiming at enhancing the proliferation resistance of plutonium produced in the blanket. The MA loading potential to enhance the proliferation resistance of plutonium is investigated, with considering actual design constraints on the fuel decay heat from the fuel handling and fabrication points of view, as MAs considerably generate decay heat. It reveals that depending on doping quantity of MAs, it is possible to denature produced plutonium by MA transmutation. MA addition in the blanket gives a significant increment in 238Pu fraction of generated plutonium but less effect on other even-mass-number plutonium isotopes. However, it is important that MA compositions should be adequately controlled to satisfy both the proliferation resistance requirements and the decay heat constraints for fuel handling.  相似文献   

6.
利用同轴P型高纯锗探测器,对X荧光分析的~(238)Pu低能光子源进行γ能谱分析,并对~(233)Pa、~(224)Ra、~(212)Pb、~(212)Bi及~(208)Tl的特征γ射线进行分析,确定上述核素的来源。其中,~(233)Pa是生产~(238)Pu的原料237 Np的衰变产物,~(224)Ra、~(212)Pb、~(212)Bi及~(208)Tl均为生产~(238)Pu的副产物~(236)Pu的衰变子核。能量为350、440、844、1 014、1 130、1 266、1 368、1 454keV的γ射线是α粒子轰击源封装材料引起原子核库伦激发或γ射线照射周边环境引起核激发产生。进行效率刻度后,使用γ能谱法计算各放射性核素的活度,并根据放射性平衡计算各放射性核素的质量。通过对~(238)Pu源γ能谱的分析,建立计算放射性同位素活度与质量的方法。  相似文献   

7.
Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 wt% of highly specific activity isotope 238Pu into the 239Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on 238Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by ∼0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys.  相似文献   

8.
Total disintegration rate, gamma-ray energy release rate and energy spectrum of the fission products of 235U, 239Pu, 241Pu, and 233U by thermal neutrons, and 235U, 238U, 239Pu and 232Th by fission spectrum neutrons have been reevaluated as a function of reactor operating times from 102 to 108 sec after shutdown. Decay scheme data were taken mainly from the Table of Isotopes [1] and fission yields from Meek and Rider's 1972 recommendations [2]. Gamma energy releases do not depend strongly on the incident neutron energy, and those for 239Pu and 241Pu are much different from that for 235U. Soon after fission, the present values for burst fission are lower than those of Perkins [3], but agree after 104 sec and agree better with the experimental results of Sugarman et al. [4] and Borst [5]. The calculated data are tabulated in detail to facilitate interpolation.  相似文献   

9.
To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm3) to the top (0.35 g/cm3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides (237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate-term of nuclear energy reconnaissance.  相似文献   

10.
The atomic fractions of 238Pu and 241Am in MOX fuels recycled in light water reactors are 1% to 2% and not significant compared with those of major Pu isotopes. On the other hand, recent evaluated nuclear data libraries, such as JENDL-4.0 and JEFF-3.2, give noticeably different thermal and epithermal neutron capture cross sections for 238Pu and 241Am. The thermal neutron capture cross sections of 238Pu and 241Am in JEFF-3.2 are 31% and 9% larger than those of JENDL-4.0, respectively. This paper shows the effect of the differences in the neutron cross sections on analysis results of two different integral experiments. The first is the isotopic compositions of 238Pu on UO2 and MOX fuels irradiated in BWR and PWR, and the second is the critical experiments of the water moderated cores fully loaded with MOX fuels. The former was analyzed by using the continuous energy Monte Carlo burnup calculation code MVP-BURN and the latter by the continuous energy Monte Carlo calculation code MVP. The comparisons between the calculated and measured results indicate that the most likely thermal and epithermal neutron capture cross sections of 238Pu and 241Am should be around at the middle between those of JEFF-3.2 and JENDL-4.0.  相似文献   

11.
The L X-ray photons emitted by transuranic (TRU) elements are expected to be useful for developing nondestructive TRU monitors. Energy spectra of L X-rays emitted by 241Am, 238Pu and 239Pu sources were measured by a transition edge sensor (TES) microcalorimeter, which allowed precise peak identification with high energy resolution. In the measurements using the TES microcalorimeter, the full width at half-maximum energy resolution was 62.6 eV at 17.222 keV for 239Pu source, 62.5 eV at 17.222 keV for 238Pu source and 60.9 eV at 17.751 keV for 241Am source. This study demonstrates the separation of 241Am and plutonium isotopes by L X-ray spectroscopy using a TES microcalorimeter.  相似文献   

12.
Protected plutonium production (PPP) is an intrinsic measure to enhance the proliferation resistance of Pu by raising the 238Pu isotopic concentration, which denatures Pu on account of the high spontaneous fission neutron (SFN) rate and large decay heat (DH). This study is aimed at examining the feasibility of reprocessed uranium (RepU) with or without the addition of minor actinide (MA) in LWR fuel cycle for PPP and to make a tentative economic assessment of RepU possessing the PPP feature. It was analytically clarified that RepU enriched to 5% 235U by centrifugation produced denatured Pu at higher burnup than about 40GWd/t. By the addition of more than 0.5% MA to RepU and natural uranium both enriched to 5%, Pu generated in the uranium fuel with MA added could be denatured up to 40 GWd/t at least. A diagram designed with functions of SFN rate and DH explicated the PPP features of re-enriched RepU and enriched natural uranium with or without MA addition. The economic assessment indicated that the cost of fuel cycle applying re-enriched RepU would be comparable to that of the conventional fuel cycle, if the cost of the source RepU is low. In addition, the LWR fuel cycle applying RepU for PPP was discussed.  相似文献   

13.
Americium is a key element to design the FBR based nuclear fuel cycle, because of its long-term high radiological toxicity as well as a resource of even-mass-number plutonium by its transmutation in reactors, which contributes the enhancement of proliferation resistance. The present paper summarizes analysis of the individual Am and U samples irradiation in Joyo to re-evaluate the results of Pu isotopes in the measure of proliferation resistance, and to combine the results for the prediction of DU-Am irradiation especially in the production of Pu isotopes. By the prediction of DU-Am oxide fuel in fast reactor environment with detail fuel irradiation analysis, it was confirmed that neutron moderation and fuel size affects the produced Pu isotope and its vector due to the very high sensitivity of 238U resonance capture reaction, the larger diameter fuel is more preferable in the case of moderated neutron spectrum environment for denaturing Pu in fast reactor blanket. Finally proliferation resistance of all the Pu produced in U, Am sample irradiation and DU-Am fuel irradiation prediction were evaluated based on decay heat and spontaneous fission neutron rate, and it was confirmed 241Am produces un-attractive Pu to abuse from the beginning to the end of irradiation, and more than 2% of 241Am doping is required to enhance the proliferation resistance of Pu to MOX grade and Kessler’s proposal in moderated neutron spectrum environment in fast reactor.  相似文献   

14.
A conceptual design study was carried out to enhance proliferation-resistant nature of current light water reactor fuels. Main features of the proliferation-resistant fuel design are adoption of alloy instead of oxide and utilization of enriched reprocessed uranium (10 wt% 235U). Major dimensions of the fuel assembly were not changed because of thermal-hydraulic considerations and back-fittability to current PWRs. Its smaller 238U inventory reduces generation of plutonium and 236U in the reprocessed uranium promotes generation of 238Pu that has large decay heat. The assembly calculation results of the fuel indicated that the fuel has good proliferation-resistant nature in the viewpoint of decreased plutonium generation, worse plutonium composition and increased decay heat. Neutronic analyses of an equilibrium core loaded with the proliferation-resistant fuels were carried out and calculation results indicate that variations of major core safety parameters are not very large. Therefore, basic feasibility of the proliferation-resistant fuel design using reprocessed uranium was confirmed in the course of this study.  相似文献   

15.
Exsting experimental thermal, fast, and 14-MeV neutron-induced fission-product cumulative and independent yieds have been compiled, corrected to common reference values, and listed in tabular form for the following fissile nuclides:Thermal-neutron fission: cumulative yields for 227Th, 229Th, 233U, 235U, 239Pu, 241Pu, 241Am, 242Am, 245Cm, 249Cf, 251Cf, 254Es, and 255Fm; independent yieds for 233U, 235U, 237Np, 238U, and 239Pu.Fast-neutron fission: cumulativ yields for 227Ac, 231Pa, 232Th, 233U, 235U, 237Np, 238U, and 239Pu; independent yields for 235U and 238U.14-MeV-neutron fission: cumulative yields for 231Pa, 232Th, 233U, 235U, 237Np, 238U, and 239Pu; independent yields for 232Th, 233U, 235U, 238U, and 239Pu.11-MeV-neutron fission: cumulative yields for 232Th.3-MeV-neutron fission: cumulative yields for 231Pa, 232Th, and 238U.1.1-MeV-neutron fission: cumulative yields for 237Np.From these experimental values the unknown independent yields are deduced empirically for thermal-neutron fission of 233U, 235U, 239Pu, and 241Pu; the fast fission of 232Th, 233U, 235U, 238U, 239Pu, 240Pu, and 241Pu (the chain yields for 240Pu and 241Pu used at this energy being predictions); and the 14-MeV-neutron fission of 232Th, 233U, 235U, and 238U.Finally, by the fitting of the preceding information to condition equations derived from the conservation laws, adjusted sets of chain and independent yields are calculated for thermal fission of 233U, 235U, 239Pu, and 241Pu; fast fission of 232Th, 233U, 235U, 238U, 239Pu, and 241Pu; and 14-MeV fission of 232Th, 233U, 235U, and 238U. The literature search is probably complete to the end of 1975; some 1976 results are included.This paper replaces and makes obsolete the following UKAEA reports: AERE-R7209, AERE-R7394, AERE-R7680, and AERE-R8152.  相似文献   

16.
A simple method has been developed for calculating the second order sensitivity coefficient of static and burnup-dependent core performance parameters. The method is applied to a small and a large fast breeder reactors. Changes in core performance parameters due to 10% cross section changes are compared with that predicted by the first and the second order sensitivity analyses. Numerical results reveal that the changes in breeding ratio, reaction rate ratio of the 238U capture to the 239Pu fission rate and burnup reactivity loss due to the 10% change in the 239Pu fission cross section and/or the 239Pu v-value show nonlinear behavior, and the second order sensitivity can predict the changes accurately.  相似文献   

17.
A procedure for separating 238Pu from a Np sample irradiated with neutrons is described. Rapid separation of Pu by HDEHP solvent extraction was attempted, and without adjusting its valency states in the dissolver solution of the sample. Both Pu(IV) and Pu(VI) were extracted along with Np from the HNO3 solutions of various concentrations. The Pu and Np extracted in the organic solution were back-extracted with oxalic acid solutions. The decontamination factors of the crude products were of the order of 102 for gross γ-activity. The Pu in the products was separated from Np by means of ion exchange resin columns. Approximately 0.5 mg of 238Pu was obtained with an efficiency exceeding 95%.  相似文献   

18.
The present study focuses on the exploration of the effect of minor actinide (MA) addition into uranium oxide fuels of different enrichment (5% 235U and 20% 235U) as ways of increasing fraction of even-mass-number plutonium isotopes. Among plutonium isotopes, 238Pu, 240Pu and 242Pu have the characteristics of relatively high decay heat and spontaneous fission neutron rate that can improve proliferation-resistant properties of a plutonium composition. Two doping options were proposed, i.e. doping of all MA elements (Np, Am and Cm) and doping of only Np to observe their effect on plutonium proliferation-resistant properties. Pressurized water reactor geometry has been chosen for fuels irradiation environment where irradiation has been extended beyond critical to explore the subcritical system potential. Results indicate that a large amount of MA doping within subcritical operation highly improves the proliferation-resistant properties of the plutonium with high total plutonium production. Doping of 1% MA or Np into 5% 235U enriched uranium fuel appears possible for critical operation of the current commercial light water reactor with reasonable improvement in the plutonium proliferation-resistant properties.  相似文献   

19.
Comparing with the fission product nuclide (FP) decay heat summation calculation result in MeV/sec/fission based on the JENDL FP decay and yield data files 2011 for the burst fission, FP decay heat calculated by ORIGEN2.2 coupled with JENDL-4.0 base library ORLIBJ40 was verified at the cooling time from 1 sec to 108 sec for 235U (thermal), 238U (fast), 239Pu (thermal) and 241Pu (thermal). For these fission nuclides, FP decay heat calculated by CASMO5 at the same cooling time after a short irradiation (104 sec) was also compared with that of ORIGEN2.2. In the analysis of decay heat measurements at the cooling time from 2.3 years to 27 years consisting of four data sets on the fuel assemblies discharged from the US PWRs and BWRs, and the Swedish PWRs and BWRs, the average values of the ratios of the calculated to measured results (C/E's) were from 0.972 to 1.031 for ORIGEN2.2, and from 0.977 to 1.016 for CASMO5. The standard deviations of C/E's for the four data sets were from 0.02 to 0.03 for the both codes except for those of the US BWR fuel assemblies which were from 0.11 to 0.12. The obtained C/E's were similar to those in the precedent study.  相似文献   

20.
Resonance shielding factors based on the assumption of constant collision density have been compared with those obtained by solving rigorously the slowing down equation. The results obtained by calculating numerically the flux for this assumption have been thoroughly examined for several compositions and temperatures. This detailed investigation has been based on consideration of the interaction effects between neighboring resonances in both the same and different nuclear species. The results obtained have permitted determination of the limits of accuracy obtained with conventional analytical methods. The accuracy of two typical methods of approximation based on the above basic assumption has also been investigated for important Doppler resonance regions in large fast reactor.

The study has covered the resonance regions below 21.5 keV for 238U, and below lOkeV for 235U and 239Pu. It has been found that the results obtained numerically from the assumption of constant collision density are fairly good at higher energies, but the errors become large with decreasing neutron energy and the increasing concentration of fuel. Furthermore the shielding factor and the temperature coefficient of 239Pu are affected considerably by superposition of the resonances of 238U, and the errors are thereby accentuated by a factor of more than two. And the errors resulting from the analytical methods have been found larger than those incurred by the assumption of constant collision density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号