首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo-spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.  相似文献   

2.
The propagation characteristics of the beam under various initial conditions are investigated by means of PIC method. The influences of density modulation and velocity modulation on the propagation characteristics are discussed and compared. The results reveal that by changing the amplitude of the two kinds of modulations and the phase difference between them, the distribution property of the first harmonic of the current density can be adapted along the beam propagating path, which is a feasible method to enhance the beam-wave interaction efficiency in Cerenkov HPM devices.  相似文献   

3.
The method of energy dispersion in magnetic field is used to analyze the energy spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator.A sector magnet is applied for energy analysis of the electron beam,with a bending radius of 300 mm and a deflection angle of 90°.For each pulse,the time-resolved and integral images of the electron position at the output port of beam-bending line are recorded by a streak camera and a CCD camera,respectively.Experimental results demonstrate an energy spread of less than ±2.0%for the electron pulses.The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.  相似文献   

4.
The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.  相似文献   

5.
<正>The disk-loaded travelling wave accelerating tube is widely applied in 10MeV electrons irradiating linear accelerator because of simple structure and good stability.The requirement of beam quality for electron irradiation is not strict so there is not a separated bunching section.Instead we changed phase velocity in first several cells to increase capture efficiency and accelerating efficiency.  相似文献   

6.
The spatially modulated electron distribution of plasma is the basis for obtaining programmable electron density patterns. It has an important influence on plasma technology applications. We propose an efficient scheme to realize controllable electron density patterns in underdense plasma based on the array laser–plasma interaction. Theoretical evidence for the realization of programmable electron density patterns and the corresponding electrostatic field is provided analytically, which is confirmed by particle-in-cell simulations. Results show that the spatial distribution of electron density in the propagation and transverse directions of the laser can be highly modulated to obtain rich programmable electron density patterns by adjusting the array pattern code and pulse width of the array laser beam.  相似文献   

7.
For exploiting advantages of electron beam air plasma in some unusual applications,a Monte Carlo(MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect.Based on the model,the electron beam induced temperature field and the related plasma properties are investigated.The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K.Moreover,much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state.The beam ranges can,with beam energies of 75 keV and 80 keV,exceed 1.0 m and 1.2 m in air at pressure of 100 torr,respectively.Finally,a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.  相似文献   

8.
The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.  相似文献   

9.
With betatron oscillation characteristics of the electron beam and ion channel effect taken into account,dispersion characteristics of electrostatic modes and TM modes for a relativistic electron beam guided by ion channel are studied.Dispersion relations are derived and solved numerically to investigate the dependence of the dispersion characteristics for electrostatic modes and TM modes on the betatron oscillation frequency and the ratio of the relativistic electron beam radius to the waveguide radius.The effects of the boundary current on the dispersion characteristic of the TM modes and the interaction between the betatron modes and TM modes are analyzed.When considering the boundary current,for a strong ion channel,a new low-frequency branch of the TM modes arises and the interaction frequency between the betatron modes and the TM01 modes is increased with the same parameters.  相似文献   

10.
In this paper, a new mechanism of electromagnetic instability, the induced ion-channel instability, is studied. It is based on the transverse driven betatron oscillation of relativistic electron beam induced by an additional magnetic undulator with a period close to the betatron wavelength in an ion channel. As its amplitude is sensitive to the electron beam energy, the driven betatron oscillation may determine electron beam grouping in the ponderomotive potential by selecting the undulator strength and period, and it provides a new mechanism of electron bunching, resulting in electromagnetic instability. Under proper condition, a new free-electron laser based on this mechanism may be realized.  相似文献   

11.
In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff parameter, which were introduced by CHANG and LI, are applied. Therefore, divergence difficulties and the customary replacement of relative velocity g by thermal velocity vth are naturally avoided. The probability function P(v, Av) for non- Maxwellian scattering is derived by the method of choosing velocity transfer Av, which is a true measure of collision intensity, as an independent variable. The method enables the difference between small-angle scattering and small-momentum-transfer collisions of the inverse-square force to be well clarified. With the help of the probability function, the Fokker-Planck coefficients are obtained by a normal original Fokker-Planck approach. The friction and diffusion coefficients of the Fokker-Planck equation are modified for non-Maxwellian scattering and are used to investigate the relaxation processes for the weakly coupled plasma. The profiles of the relaxation rates show that the slowing down and deflection processes are weakened in the conditions of non-Maxwellian scattering.  相似文献   

12.
针对单粒子效应测试对质子束能量的要求,中国原子能科学研究院设计了一台300 MeV/A H_2~+超导回旋加速器,该加速器使用超导线圈实现主磁铁小型化,剥离引出H_2~+离子获得可变能量的质子束。通过调节剥离点位置和分析剥离后质子的轨迹与束流包络,对该加速器引出过程的束流动力学进行了研究,完成了引出过程的物理设计。结果表明,此台加速器可在205~240 MeV、265~300 MeV内连续变能量引出质子,在更低能量范围内有单能量点引出质子的能力。  相似文献   

13.
The electron drift velocity, electron energy distribution function (EEDF), densitynormalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SFs-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V.cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzlnann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SFB-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.  相似文献   

14.
O-mode Doppler reflectometer has been successfully developed as an important diagnostic system on HL-2A. It can be used to measure the turbulence propagation in both plasma edge and confinement zone. The Doppler reflectometer system consists of two fixed frequency homodyne receivers: 15 GHz (corresponding to cutoff density of 0.3×10^19 m^-3) and 33 GHz (corresponding to cutoff density of 1.35× 10^19 m^-3). The Doppler reflectometry principle and the experimental arrangements on HL-2A are presented. Meanwhile, the experimental Doppler reflectometric spectra under different discharge conditions, with and without ECRH, were obtained. Furthermore, the turbulence propagation velocity change and the profile were also observed in different discharge conditions.  相似文献   

15.
Effect of parameters of ion implantation machine, including ion energy, total dose, dose rate, impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied. The best parameters were screened out. The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.  相似文献   

16.
Low-energy ion beam implantation (10 - 200 keV) has been proved to have a wide range of biological effects and is broadly used in the breeding of crops and micro-organisms.To understand its mechanisms better and facilitate its applications, the developments in the bioeffects of low energy ion beam implantation in the past twenty years are summarized in this paper.  相似文献   

17.
By extending the minimum spanning tree (MST) clusterization algorithm for the binding energy cut, the isospin asymmetry dependence of directed flow for isospin sensitive isobar pairs (neutrons-protons, 3H-3He) is studied from low towards high incident energies. The modified clusterization method (MSTB) has the advantage to identify the fragments at quite early time. It enhances (reduces) the production of free nucleons (fragments) over MST method. The directed flow of isobaric pair 3H-3He is more sensitive towards isospin asymmetry caused by MSTB than isobaric pair n-p. This sensitivity becomes quite strong towards the high incident energy and neutron-rich reaction system. In conclusion, the inclusion of binding energy in clusterization method for the flow studies has been uniquely important for understanding the isospin physics, especially for high density behavior of symmetry energy.  相似文献   

18.
Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8×10^14 N^+/cm^2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4 reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.  相似文献   

19.
Oxidation of S(IV) to S(VI) in the effluent of a flue gas desulfurization(FGD) sys- tem is very critical for industrial applications of seawater FGD. This paper reports a pulsed corona discharge oxidation process combined with a TiO2 photocatalyst to convert S(IV) to S(VI) in artificial seawater. Experimental results show that the oxidation of S(IV) in artificial seawater is enhanced in the pulsed discharge plasma process through the application of TiO2 coating electrodes. The oxidation rate of S(IV) using Ti metal as a ground electrode is about 2.0x10-4 mol. L 1. min-1, the oxidation rate using TiO2/Ti electrode prepared by annealing at 500 ~C in air is 4.5x 10-4 tool. L-a ~ min-1, an increase with a factor 2.25. The annealing temper- ature for preparing TiO2/Ti electrode has a strong effect on the oxidation of S(IV) in artificial seawater. The results of in-situ emission spectroscopic analysis show that chemically active species (i.e. hydroxyl radicals and oxygen radicals) are produced in the pulsed discharge plasma process. Compared with the traditional air oxidation process and the sole plasma-induced oxidation process, the combined application of TiO2 photocatalysts and a pulsed high-voltage electrical discharge process is useful in enhancing the energy and conversion efficiency of S(IV) for the seawater FGD system.  相似文献   

20.
We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is expressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号