首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
The information on thermal and mechanical properties of the minor actinide dioxides: NpO2, AmO2 and CmO2, is still very scarce, and a large uncertainty exists because of difficulties related to their fabrication and manipulation. Prognosis based on a set of the sound physical models and the similarity principle can be useful in this situation. Using the combination of the macroscopic and microscopic approaches developed earlier for thermodynamic properties of actinide dioxides, and the Klemmens model for their thermal conductivity, a few relationships bounding the main thermophysical properties of the actinide dioxides were deduced. These relationships were applied for the calculation of the isochoric and isobaric heat capacity, the isobaric thermal expansion coefficient, the isothermal bulk elastic modulus and the thermal conductivity of NpO2, AmO2 and CmO2 in a large temperature range. A rather satisfactory agreement with the available experimental data and recommendations was demonstrated.  相似文献   

2.
The reactivity of H2 towards UO22+ has been studied experimentally using a PEEK coated autoclave where the UO22+ concentration in aqueous solution containing 2 mM carbonate was measured as a function of time at pH2∼40 bar. The experiments were performed in the temperature interval 74-100 °C. In addition, the suggested catalytic activity of UO2 on the reduction of UO22+ by H2 was investigated. The results clearly show that H2 is capable of reducing UO22+ to UO2 without the presence of a catalyst. The reaction is of first order with respect to UO22+. The activation energy for the process is 130 ± 24 kJ mol−1 and the rate constant is k298K=3.6×10−9 l mol−1 s−1. The activation enthalpy and entropy for the process was determined to 126 kJ mol−1 and 16.5 J mol−1 K−1, respectively. Traces of oxygen were shown to inhibit the reduction process. Hence, the suggested catalytic activity of freshly precipitated UO2 on the reduction of UO22+ by H2 could not be confirmed.  相似文献   

3.
Because of the high neutron capture cross section for five consecutive europium isotopes, Eu2O3 is of interest as a control material for nuclear reactors. A tendency toward excessive grain growth degrades its mechanical properties. Small amounts of HfO2 and Ta2O5 were added to the Eu2O3 in attempts to suppress this grain growth. Three at % substitution of Hf for  相似文献   

4.
The radiotoxicity hazard of U-free Rock-like oxide: ROX (PuO2+ZrO2) and Thorium oxide: TOX (PuO2+ThO2) LWR spent fuels is investigated and radiotoxicity hazard of MOX spent fuel is considered as a reference case. The long-term ingestion radiotoxicity hazard of ROX spent fuel is one third and nearly one fourth of that of TOX and MOX spent fuels, respectively. This is because the discharged Pu and long lived Np in ROX fuel is less than that of TOX and MOX fuels. In TOX fuel, discharged Pu and MA are lower than that of MOX fuel but the long-term radiotoxicity hazard of spent fuel is nearly the same as MOX spent fuel. At the cooling 105 years, the radiotoxicity hazard of TOX spent fuel is approximately ten and three times higher than that of ROX and MOX spent fuels, respectively due to higher toxic contribution of 229Th in TOX spent fuel.  相似文献   

5.
The formation of U2C3 by the reaction of UC2 with UO2 has been studied by chemical and X-ray analyses at temperatures between 1400 and 1700 °C in vacuo. The reaction is represented by 7 UC2 + UO2 → 4 U2C3 + 2 CO.  相似文献   

6.
7.
The high-temperature specific heat of solid UO2, ThO2, and Al2O3 can be represented by an equation of the form Cp(s) = 3nRF(?D/T) + dT3, (1) where ?D is the Debye temperature, F(?D/T) is the Debye function, d represents contributions of the anharmonic vibrations within the lattice, and n denotes the number of atoms per molecule. In the liquid the corresponding equation is Cp(1) = 3nRF(?D/T) + hT2, (2) where h is the anharmonic term. It is shown that for Al2O3 and UO2, where experimental data for the liquid phase are also available, dh has the same value, Indicating that both materials behave identically. If we compare the thermodynamic relationship Cp ? Cv = Vα2KT, (3) where V is the volume, α the volume expansion coefficient, and K the bulk modulus, with equation (1), It follows that d must be equal to 2KT2; the value of 2KT2 is calculated in the temperature region where d was obtained; within experimental error they are equal.  相似文献   

8.
We perform first-principles calculations of electronic structure and optical properties for UO2 and PuO2 based on the density functional theory using the generalized gradient approximation (GGA) + U scheme. The main features in orbital-resolved partial density of states for occupied f and p orbitals, unoccupied d orbitals, and related gaps are well reproduced compared to experimental observations. Based on the satisfactory ground-state electronic structure calculations, the dynamical dielectric function and related optical spectra, i.e., the reflectivity, adsorption coefficient, energy-loss, and refractive index spectrum, are obtained. These results are consistent with the available experiments.  相似文献   

9.
The kinetics of initial stage sintering of UO2 powder were reinvestigated, using Ar-10% H2 atmosphere. The effect of the addition of neodynium oxide was studied. The results revealed that surface and grain boundary diffusion mechanisms act simultaneously. The values of activation energies were found to be 48.48 ± 3.51 kcal/mole in the temperature range 870–942°C and 89.88 ± 9.87 kcal/mole in the temperature range of 942–1030°C for UO2, and 115.61 ± 7.77 kcal/mole in the temperature range 1030–1150°C for UO2 + Nd2O3. An important decrease in the calculated diffusion coefficient occurs by the addition of Nd2O3.  相似文献   

10.
The sticking and erosion of C2Hx molecules (where x=0-6), at 300 and 2100 K onto hydrogenated diamond (1 1 1) surfaces was investigated by means of molecular dynamics simulations. We employed both quantum-mechanical and empirical force models. Generally, the sticking probability is observed to somewhat increase when the radical temperature increases and strongly decrease with increasing number of H atoms in the molecule.  相似文献   

11.
ThO2 containing around 2-3% 233UO2 is the proposed fuel for the forthcoming Indian Advanced Heavy Water Reactor (AHWR). This fuel is prepared by powder metallurgy technique using ThO2 and U3O8 powders as the starting material. The densification behaviour of the fuel was evaluated using a high temperature dilatometer in four different atmospheres Ar, Ar-8%H2, CO2 and air. Air was found to be the best medium for sintering among them. For Ar and Ar-8%H2 atmospheres, the former gave a slightly higher densification. Thermogravimetric studies carried out on ThO2-2%U3O8 granules in air showed a continuous decrease in weight up to 1500 °C. The effectiveness of U3O8 in enhancing the sintering of ThO2 has been established.  相似文献   

12.
为改良现有硫酸钡比浊法测定含铀浸出液中SO2-4不能长时间稳定均匀地形成硫酸钡悬浊液的缺点,采用吸光比浊法研究不同波长、酸度、稳定剂、无水乙醇用量对硫酸钡分散体系稳定性的影响以提高测量准确度。实验结果表明,改良比浊法测定SO2-4浓度体系中的最佳实验条件为1.0 mL HCl(3 mol/L)、5.0 mL聚乙烯醇溶液(含w=10%BaCl2•2H2O)、3.0 mL 无水乙醇。在最佳波长440 nm处,SO2-4质量浓度在0.2~1.5 g/L范围内符合比尔定律。该方法的检出限为 0.003 6 mg/L,定量限为 0.012 0 mg/L(n=20)。该方法样品测量回收率为99.0%~99.8%,加标相对标准偏差为 0.63%~2.44%(n=2)。与 GB/T 5750.5-2006 国标法比较,该方法操作简便、快捷,结果准确度高,在CO2和O2地浸采铀浸出原液SO2-4浓度的测定中有广阔的应用前景。  相似文献   

13.
Thermoanalytical (TG-DTA-EGA) and X-ray diffraction measurements have been used to study the reaction between uranyl nitrate hexahydrate and strontium nitrate. The results confirmed the absence of a direct interaction between the two compounds. The presence of strontium nitrate, however, ensured that the extent of hydrolysis and polymerisation of uranyl nitrate hexahydrate during its dehydration and decomposition to UO3 is significantly reduced. DTA curves recorded in both heating and cooling modes gave evidence to the occurrence of a reaction between molten strontium nitrate and uranium trioxide to form nitrato-complexes of uranium and strontium. X-ray diffraction data on reaction residues obtained at different temperatures and cooled to room temperature also showed evidence for the formation of such complexes. The results obtained indicated an increase in thermal stability of these nitrato-complexes with increase in Sr/U ratio. The complex with an Sr/U ratio of 2.0 is stable up to 660 °C and the complex with Sr/U ratio of 4.0 is stable up to 680 °C. These complexes decompose at higher temperatures to give strontium uranates.  相似文献   

14.
NHO3氧化去除Np—Pu反萃液中的H2C2O4   总被引:3,自引:1,他引:2  
研究了用NHO3氧化去除TRPO流程反萃Np-Pu的H2C2O4反萃液中H2C2O4的条件。7.5mol.L^-1HNO3-0.3mol.L^-1H2C2O4混合液于90℃下蒸发130h和100℃下蒸馏回流6h,H2C2O4可完全分解去除;混合液中添加适量催化剂MnCO3,于100℃下蒸发或蒸馏回流,H2C2O4分解加速,1-1.5h内H2C2O4完全分解。蒸发或蒸馏回流过程中产生的HNO2把Np  相似文献   

15.
Solid-state chemical investigations have established that in the compositional range UO2-UO2.67-ThO3 of the U-Th-O ternary system, the following single-phase domains exist: U3O8, which does not dissolve any ThO2 in the solid state; an ordered M4O9 phase on the section between U4O9 and U2Th2O9, below ≈ 1150 °C; and a phase with fluorite structure which occupies a large part of the system and which at 1250 °C is bounded by the compositions UO2-UO2.25 (U0.43, ThO0.57)O0.25-ThO3. The maximum O/M ratio of the “fluorite” phase is O:(U + Th) = 2.25. The highest oxidation valency of uranium is 5.30; this value falls as more thorium oxide is incorporated in the (U.Th)O2 + x “fluorite” phase.  相似文献   

16.
17.
The kinetics of CRUD oxidation by H2O2 has been studied using aqueous suspensions of metal oxide powder. Fe3O4, Fe2CoO4 and Fe2NiO4 were used as model compounds for CRUD. In addition, the activation energies for the reaction between H2O2 and the three CRUD models were determined. The rate constants at room temperature were determined to 6.6 (±0.4) × 10−9, 3.4 (±0.4) × 10−8 and 1.6 × 10−10 m min−1 for Fe3O4, Fe2CoO4 and Fe2NiO4, respectively. The corresponding activation energies are 52 ± 4, 44 ± 5 and 57 ± 7 kJ mol−1, respectively. The mechanism of the reaction is briefly discussed indicating that the final solid product in all three cases is Fe2O3. In addition to the experimental studies, the theoretical grounds for kinetics of reactions in particle suspensions are discussed. The theoretical discussion is also used to explain the somewhat unexpected trends in reactivity observed experimentally.  相似文献   

18.
A laser process is presented that has been specially developed for joining oxide ceramics such as zirconium oxide (ZrO2) and aluminium oxide (Al2O3). It details, by way of example, the design of the laser process applied for to producing both Al2O3-Al2O3 and ZrO2-ZrO2 joints using siliceous glasses as fillers.The heat source used was a continuous wave diode laser with a wavelength range of 808-1010 nm. Glasses of the SiO2-Al2O3-B2O3-MeO system were developed as high-temperature resistant brazing fillers whose expansion coefficients, in particular, were optimally adapted to those of the ceramics to be joined. Specially designed measuring devices help to determine both the temperature-dependent emission coefficients and the synchronously determined proportions of reflection and transmission.The glass-ceramic joints produced are free from gas inclusions and macroscopic defects and exhibit a homogenous structure. The average strength values achieved were 158 MPa for the Al2O3 system and 190 MPa for the ZrO2 system, respectively.  相似文献   

19.
The creep of UO2 containing small additions of Nb2O5 has been investigated in the stress range 0.5–90 MN/m2 at temperatures between 1422 and 1573 K. The functional dependence of the creep rate of five dopant concentrations up to 0.8 mol% Nb2O5 has been examined and it was established that in all the materials the secondary creep rate could be represented by the equation /.εkT = nexp(?Q/RT), where /.ε is the steady state creep rate per hour, Q the activation energy and A and n are constants for each material. It was observed that Nb2O5 additions can cause a dramatic increase in the steady state creep rate as long as the niobium ion is maintained in the Nb5+ valence state. Material containing 0.4 mol% Nb2O5 creeps three orders of magnitude faster than the pure material.Analysis of the results in terms of grain size compensated viscosity suggest that, like “pure” UO2, the creep rate of Nb2O5 doped fuel is diffusion-controlled and proportional to the reciprocal square of the grain size. A model is developed which suggests that the increase in creep rate results from suppression of the U5+ ion concentration by the addition of Mb5+ ions, which modifies the crystal defect structure and hence the uranium ion diffusion coefficient.  相似文献   

20.
The phase diagram of CaO-CaCl2 has been determined. Eutectics at CaO (5 mol%) — CaCl2 (mp 1020K) and CaO (21 mol%) — CaCl2 (mp 1102K) were found. The congruently melting compound, CaO.4CaCl2, was supported by X-ray diffraction evidence. The maximum solubility of calcium oxide in calcium chloride at temperatures relevant to the reduction of PuO2 is about 21 mol% CaO.The ternary liquidus diagram of the CaO-CaCl2-KCl system has been determined and it was found only a relatively small area of the system is completely molten below 1080K. A maximum solubility of 10 mol% CaO was found in KCl-CaCl2 at process temperatures. This is in disagreement with published data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号