首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Neutral beam injection is recognized as one of the most effective means of plasma heating. The target values of EAST Neutral beam injector (NBI) are beam energy 50–80 keV, injection beam total power 2–4 MW, beam pulse width 10–100 s. The beam power will deposit on the beam collimator due to the beam divergence and it will cause heat damage to heat load components, or even destroy the entire NBI system. In order to decrease the risk, the beam power deposited on heat load components should be assessed. In this article, the percent of power deposition on each heat load components has been calculated using Gaussian beam transmission model. Comparison of the results measured with water flow calorimeter and calculated results shows the beam transmission model has relative good agreement with real distribution. The results can direct the operation parameter optimization of EAST NBI.  相似文献   

2.
The neutral beam injector(NBI) system was designed and developed mainly for the plasma heating on the Experimental Advanced Superconducting Tokamak(EAST). The high power ion source is the key part of the NBI. A hot cathode ion source was used on the EAST-NBI. The ion source was conditioned on the ion source test bed with hydrogen gas and achieved the designed parameters. The deuterium gas was used when it moved to the EAST-NBI. The main performance of the ion source on EAST is presented in this paper. The highest beam power of 4.5 MW in NBI-1 and 2.75 MW in NBI-2 was achieved. The total neutral beam power is about 4.5 MW. The long pulse beam of 100 s is injected into the EAST plasma too.  相似文献   

3.
The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP (Institute of Plasma Physics,Chinese Academy of Sciences):one for the neutralbeam test stand and two for the EAST neutral-beam injectors (NBI-1 and NBI-2,respectively).Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source,and two high voltage and high current DC power supplies for the accelerator grid system.The operation range of the NB power supply is about 80 percent of the design value,which is the safe and stable operation range.At the neutral-beam test stand,a hydrogen ion beam with a beam pulse of 150 s,beam power of 1.5 MW and beam energy of 50 keV was achieved during the long-pulse testing experiments.The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.  相似文献   

4.
Detailed trajectories of the residual ion passing through a reflection magnet, which is installed in the Experimental Advanced Superconducting Tokamak (EAST) neutral beam injector (NBI) system to remove the residual ion from the beam path, are reported. Monte Carlo simulation has been performed to obtain estimations of the beam density on the high heat flux elements of reflection magnet. On magnet pole shielding, there are three high beam power density regions, resulting from beam line focus and corresponding to the full energy, half energy and third energy. These high heat flux regions will bring a serious challenge for steady-state operation. The simulation result indicates that the re-ionization loss is about 2.43% and the magnet pole shielding encounters a problem of beam line focus, which should be taken seriously during the steady-state operation.  相似文献   

5.
Neutral beam injection (NBI) is recognized as one of the most e®ective means for plasma heating. A 100 s long pulse neutral beam with 30 keV beam energy, 10 A beam current and a 100 s long pulse modulating neutral beam with 50 keV beam energy, 16 A beam current were achieved in the EAST neutral beam injector on the test-stand. The preliminary results suggest that EAST-NBI system initially possess the ability of long pulse beam extraction.  相似文献   

6.
《等离子体科学和技术》2016,18(12):1215-1219
Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector(4–8 MW, 10–100 s) were built and operated in 2014. Neutralization efficiency is one of the important parameters for neutral beam. High neutralization efficiency can not only improve injection power at the same beam energy, but also decrease the power deposited on the heat-load components in the neutral beam injector(NBI). This research explores the power deposition distribution at different neutralization efficiencies on the beamline components of the NBI device. This work has great significance for guiding the operation of EAST-NBI, especially in long pulse and high power operation, which can reduce the risk of thermal damage of the beamline components and extend the working life of the NBI device.  相似文献   

7.
Neutral beam injection (NBI) is recognized as one of the most effective means of plasma heating. The EAST NBI water flow calorimetry system (WFCS) based on PCI extensions for instrumentation (PXI) was established, it can measure temperature rise and flow rate of cooling water of the heat load components, and achieve beam power distribution and neutralization efficiency. Experimental data obtained from WFCS are feedback of the ion source operation state and direct the operation parameter optimization of the ion source. Experimental results show that the WFCS is stable, reliable, and meet the experimental requirements fully.  相似文献   

8.
EAST托卡马克的中性束注入方案   总被引:8,自引:0,他引:8  
胡立群  张晓东  姚若河 《核技术》2006,29(2):149-152
高能中性束注入(Neutral beam injection,NBI)是核聚变装置托卡马克采用的芯部辅助加热和非感应电流驱动主要手段之一.本文介绍了国家大科学工程全超导托卡马克实验装置(Experimental advanced super-conductingtokamak,EAST)上的高能NBI加热方案及注入器的工程要求,并讨论了中性束在EAST等离子体中的传输等相关问题.  相似文献   

9.
中性束注入加热为全超导非圆截面托卡马克(EAST)主要辅助加热方式之一。伴随着中性束注入加热,等离子体中子出射强度可达到1014 n/s。由于中性束注入窗口具有较大的开口尺寸,窗口泄露的大量中子可能影响系统的安全稳定运行。本文基于EAST 中性束二维模型和蒙特卡洛程序MCNP与材料活化程序FISPACT, 研究EAST 两条中性束夹角112.5°时,中性束关键部件材料SS304和铜活化情况,并研究材料活化所导致的停机剂量率,最后利用高纯锗能谱仪测量活化核素的γ能谱。研究表明,理论模拟与实验测量结果吻合较好。中长寿命核素51Cr、58Co、54Mn等为SS304主要活化核素。EAST停止运行5 min后,停机剂量率已经降低到国际热核聚变实验堆计划(ITER)设计的剂量率限值10-5 Sv/h。本研究可为研究聚变堆中性束注入窗口的材料活化和停机维护方案设计提供指导。  相似文献   

10.
Simulations of first-orbit losses of neutral beam injection(NBI) fast ions in the EAST tokamak have been studied in detail by using the orbit-following code GYCAVA and the NBI code TGCO. Beam ion losses with the wall boundary are smaller than those with the last closed flux surface boundary. In contrast to heat loads on the wall without radio frequency wave(RFW)antennas, heat loads on the wall with RFW antennas are distributed more locally near the RFW antennas. The direction of the toroidal magnetic field dramatically affects the final positions of lost fast ions, which is related to the magnetic drift. The numerical results on heat loads of beam ions corresponding to different toroidal magnetic fields are qualitatively consistent with the experimental results. Beam ion losses increase with the beam energy for the co-current NBIs and the counter-perpendicular NBI. We have studied the behavior of fast ions produced by a small section neutral beam(beamlet) by using the numerical tool NBIT. The distributions of the loss fraction of beamlet fast ions peaked near the edge of the beam section for the counter-current NBIs, and they are related to the injection angle. This indicates that the first-orbit losses can be reduced by changing the shape of beam cross section.  相似文献   

11.
The neutral beam injection(NBI) system was developed on the Experimental Advanced Superconducting Tokamak(EAST) for plasma heating and current driving. This paper presents the brief history, design, development, and the main experimental results of the RD of neutral beam injector on the test bed and on EAST. In particular, it will describe:(1) how the two beamlines with a total beam power of 8 MW were developed;(2) the design of the EAST-NBI system including the high power ion source, main vacuum chamber, inner components, beam diagnostic system and sub-system;(3) the experimental results of beamline-1 on the summer campaign of EAST in 2014 and,(4) the status of beamline-2 and the future plan of EAST-NBIs.  相似文献   

12.
The neutral beam injection (NBI-1) system has been designed for providing a 300 s deuterium beam of 120 kV/65 A as an auxiliary heating and current drive system of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak. The deuterium beam is produced from a long pulse ion source composed of a bucket-type plasma generator and a multi-aperture tetrode accelerator with the help of discharge power supplies and high voltage (HV) power supplies. The beamline components (BLCs) include a neutralizer with an optical multi-channel analyzer (OMA) section, a bending magnet (BM), an ion dump assembly, a movable calorimeter, beam scrapers, and a cryo-sorption pump system in a rectangular vacuum tank. A beam duct equipped with bellows and a voltage break is placed between the NBI vacuum tank and the KSTAR vacuum vessel. All data and parameters of the NBI system are controlled by a control and data acquisition (CODAQ) system through the EPICS based Ethernet interface.  相似文献   

13.
The neutral beam injection (NBI) system was designed to provide plasma heating and current drive for high performance and long pulse operation of the Korean Superconducting Tokamak Advanced Research (KSTAR) device using two co-current beam injection systems. Each neutral beam injection system was designed to inject three beams using three ion sources and each ion source has been designed to deliver more than 2.0 MW of deuterium neutral beam power for the 100-keV beam energy. Consequently, the final goal of the KSTAR NBI system aims to inject more than 12 MW of deuterium beam power with the two NBI for the long pulse operation of the KSTAR. As an initial step toward the long pulse (~300 s) KSTAR NBI system development, the first neutral beam injection system equipped with one ion source was constructed for the KSTAR 2010 campaign and successfully commissioned. During the KSTAR 2010 campaign, a MW-deuterium neutral beam was successfully injected to the KSTAR plasma with maximum beam energy of 90 keV and the L-H transition was observed with neutral beam heating. In recent 2011 campaign, the beam power of 1.5 MW is injected with the beam energy of 95 keV. With the beam injection, the ion and electron temperatures increased significantly, and increase of the toroidal rotation speed of the plasma was observed as well. This paper describes the design, construction, commissioning results of the first NBI system leading the successful heating experiments carried in the KSTAR 2010 and 2011 campaign and the trial of 300-s long pulse beam extraction.  相似文献   

14.
Long pulse and high performance steady-state operation is the main scientific mission of experimental advanced superconducting tokamak (EAST). In order to achieve this objective, high-power auxiliary heating systems are essential. Radio frequency (RF) wave heating and neutral beam injection (NBI) are two principal methods. NBI is an effective method of plasma heating and current drive, and it has been used in many magnetic confinement fusion devices. Based on the plasma equilibrium of EAST (Li et al., Plasma Phys Control Fusion 55:125008, 2013) plus previous EAST experimental data used as initial conditions, the NBI module (Polevoi et al., JAERI-Data, 1997) employed in automated system for transport analysis (ASTRA) code (Pereverzev et al., IPP-Report, 2002) is applied to predict the effects of plasma heating and current drive with different neutral beam injection power levels. At certain levels of plasma densities and plasma current densities, the simulation results show that the NBI heats plasma effectively, also increases the proportions of NB current and bootstrap current among total current significantly.  相似文献   

15.
For achieving the scientific mission of long pulse and high performance operation,experimental advanced superconducting tokamak(EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system.Besides RF(Radio Frequency) wave heating,neutral beam injection(NBI) is an effective heating and current drive method in fusion research.NBCD(Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak.The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code.At the condition of low plasma current and moderate plasma density,neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.  相似文献   

16.
Toroidal rotation has been recognized to have significant effects on the transport and magnetohydrodynarnic(MHD) stability of tokamak plasmas.Neutral beam injection(NBI) is the most effective rotation generation method on current,tokamak devices.To estimate the effective injected torque of the first neutral beam injection system on EAST,a simplified analytic method was derived.Calculated beam torque values were validated by those obtained from the NUBEAM code simulation.According to the results,for the collisional torque,the effective tangential radius for torque deposition is close to the beam tangency major radius.However,due to the dielectric property of tokamak plasma,the equivalent tangency major radius of the J×B torque is equal to the average major radius of the magnetic flux surface.The results will be useful for the research of toroidal momentum confinement and the experimental analysis of momentum transport related with NBI on EAST.  相似文献   

17.
《等离子体科学和技术》2016,18(11):1139-1142
Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry(WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency.  相似文献   

18.
In order to realize steady-state operation of the neutral beam injection(NBI) system with high beam energy,an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside high-heat-flux(HHF) components in the system are key issues.In this paper,taking the HHF ion dump with swirl tubes in NBI system as an example,an accurate thermal dynamic simulation method based on computational fluid dynamics(CFD) and the finite volume method is presented to predict performance of the HHF component.In this simulation method,the Eulerian multiphase method together with some empirical corrections about the inter-phase transfer model and the wall heat flux partitioning model are considered to describe the subcooled boiling.The reliability of the proposed method is validated by an experimental example with subcooled boiling inside swirl tube.The proposed method provides an important tool for the refined thermal and flow dynamic analysis of HHF components,and can be extended to study the thermal design of other complex HHF engineering structures in a straightforward way.The simulation results also verify that the swirl tube is a promising heat removing structure for the HHF components of the NBI system.  相似文献   

19.
Neutral beam injection (NBI) heating is one of the most efficient auxiliary plasma heating methods for fusion devices. The data acquisition control system (DACS) with PXI (pe- ripheral component interconnect extensions for instrumentation) data acquisition card for the first NBI system in the experimental advanced superconducting tokamak (EAST) is presented in this paper. As an important sub-system, DACS is designed to obtain physical measurement signals in the EAST NBI system and to deal and store these data with the Lempel-Ziv-Oberhumer (LZO) lossless data compression algorithm, as well as offer convenient data call-back and access inter- faces to the user for examining and analyzing the data. Experimental results show that accurate data will ensure that researchers correctly analyze it and then properly adjust the experimental parameters or operation, so DACS should take a large step in improving experimental efficiency. Tile hardware and software sections are briefly presented in this paper, and now this system has been tested to be able to work reliably and steadily.  相似文献   

20.
The neutral beam injection (NBI) heating is one of the mainly auxiliary plasma heating methods for EAST. In this paper, a data server application software is presented for NBI control system. This application software is developed on Centos OS by C programming language with TCP and multithreading technology. It mainly focuses on storing and querying experimental pulse data and engineering data; experimental user’s operation records; experimental configuration information; the collected data after processing; as well as managing and releasing experimental discharge shot number and so on. By using the unified data header structure, the data server software provides universal information exchange interfaces for different service request terminals with different operating platform, such as WinCC, Labview. With the help of data server software, those problems related on the storage, querying and processing of information and data for NBI control system are well solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号