首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion cyclotron resonance heating(ICRH),which can produce fast ions,is an important auxiliary heating method at EAST.To analyze the effect of ICRH-induced fast ions on the plasma pressure at EAST,simulations are performed using TRANSP and TORIC codes.It is found that the ICRF-induced fast ion pressure cannot be negligible when the ICRF power is sufficiently high.The magnitude of the total ion pressure can be raised up to 60%of the total pressure as the input power rises above 3 MW.The pressure profile is also significantly modified when the resonant layer is changed.It is shown that by changing the wave frequency and antenna position,the total ion pressure profile can be broadened,which might provide an option for profile control at EAST.  相似文献   

2.
Radio frequency(RF) plasma heating in ion cyclotron range of frequencies(ICRF)was successfully performed on the Experimental Advanced Superconducting Tokamak(EAST).This is mainly because lithium wall conditioning was routinely used to reduce both impurity and hydrogen(H) recycling and to improve the ICRF power absorption.Mainly ICRF heating of the H minority regime at 27 MHz has been applied in deuterium plasmas.The ion cyclotron resonance heating(ICRH) is found to depend strongly on plasma preheating.The ICRH efficiency can be much improved in conjunction with the lower hybrid wave(LHW).Effective ion and electron heating was observed with the H minority heating mode.The increase of the stored energy reached30 kJ in L-mode plasma by using the ICRF power of 1.0 MW alone when the H cyclotron resonance layer was at plasma center.  相似文献   

3.
离子回旋共振加热是EAST超导托卡马克核聚变实验中重要的辅助加热手段。高性能的高功率射频放大器阳极电源对整个加热系统的稳定运行起重要作用。本工作设计了基于脉冲阶梯调制(PSM)技术的阳极电源及其控制保护系统,通过采集电源的实验数据对电源的设计进行了验证。实验结果证明,本阳极电源的设计和参数选择均是合理正确的,电源的开通和关断以及控制保护的数据指标完全达到设计要求。  相似文献   

4.
Ion cyclotron wave resonance heating(ICRH) is one of the most important auxiliary methods to heat plasma in the Experimental Advanced Superconducting Tokamak(EAST). Several megawatts of power is transmitted through separate coaxial lines and coupled with the plasma through arrays of loop antennas. The parameters of the ICRH system, including the injected power and phasing between antenna straps, are critical to the coupling efficiency of the power as well as the resulting impact on the heating efficiency. In this paper, we present a system for feedback control of the phase between the current straps and the ICRH power on EAST. The feedback control system was tested using both a matched dummy load and a plasma load, and it successfully maintained stable operation in the 2016 EAST campaign. Good control of the injected power and wave phases was achieved during edgelocalized mode operation.  相似文献   

5.
Recent ion cyclotron resonance frequency(ICRF) coupling experiments for optimizing ICRF heating in high power discharge were performed on EAST. The coupling experiments were focus on antenna phasing and gas puffing, which were performed separately on two ports of the ion cyclotron resonance heating(ICRH) system of EAST. The antenna phasing was performed on the I-port antenna, which consists of four toroidally spaced radiating straps operating in multiple phasing cases; the coupling performance was better under low wave number ∣k_‖∣(ranging from 4.5 to 6.5). By fuelling the plasma from gas injectors, placed as uniformly spaced array from top to bottom at each side limiter of the B-port antenna, which works in dipole phasing, the coupling resistance of the B-port antenna increased obviously.Furthermore, the coupling resistance of the I-port antenna was insensitive to a smaller rate of gas puffing but when the gas injection rate was more than a certain value(1021 s~(-1)), a sharp increase in the coupling resistance of the I-port antenna occurred, which was mainly caused by the toroidal asymmetric boundary density arising from gas puffing. A more specific analysis is given in the paper.  相似文献   

6.
The ion cyclotron resonance of frequency heating(ICRH) plays an important role in plasma heating.Two ICRH antennas were designed and applied on the EAST tokamak.In order to meet the requirement imposed by high-power and long-pulse operation of EAST in the future,an active cooling system is mandatory to be designed to remove the heat load deposited on the components.Thermal analyses for high heat-load components have been carried out,which presented clear temperature distribution on each component and provided the reference data to do the optimization.Meanwhile,heat pipes were designed to satisfy the high requirement imposed by a Faraday shield and lateral limiter.  相似文献   

7.
Ion cyclotron wave resonance heating system(ICRH) which is one of the most important auxiliary system in EAST provides conditions for heating the plasma. In order to make the whole transmission network of ICRH form the required state, the coaxial switching system was developed, which mainly consists of 11 same coaxial switches. Each coaxial switch has a controller with an RS485 communication interface and is able to switch between two states. All controllers are integrated to an RS485 hub which connects to the computer. A master computer software is developed to control the coaxial switching system so as to achieve the state needs of ICRH. Moreover, several rounds of experiments show that the coaxial switching system operates reliably. The coaxial switching system has already been applied to normal use currently.  相似文献   

8.
The possibility of driving poloidal flows by use of ion Bernstein wave is assessed for Heliotron J and EAST devices by means of ray tracing analysis. Sheared poloidal flow is expected to suppress plasma turbulences due to the decorrelation of the waves. In Heliotron J and EAST plasma, the rays of Ion Bernstein Wave travel into the central region with oscillations along the magnetic lines of force and their power is absorbed by ions at the cyclotron resonance layers. The momentum input has been estimated by calculating the momentum change of rays and the poloidal flow has been estimated using neoclassical viscosities. The wave momentum changes its sign as it propagates inward, depositing sheared momentum to the plasma, and therefore causes sheared poloidal flows.  相似文献   

9.
In a 2.45 GHz electron cyclotron resonance(ECR) ion thruster powered with rod antenna under a cross magnetic field, abnormal behaviours such as sudden drop of ion beam current(Ib) and larger increasing-rate of Ibin the high microwave power(Pw) discharges at high gas flow rates were observed. A differential method was proposed to reveal the changes in the radial profiles of gray values extracted from the end-view discharge images. The increasing-rate of Ibwith respect to Pwwas used to evaluate efficiencies of ion production and transport. Analyses indicate that discharges are dominantly sustained by ordinary wave via electron heating in the electron plasma resonance layer that can shift along the rod-antenna, and extraordinary wave can only ignite a discharge in the ECR layer in the low gas flow rate regime. In terms of the confinement region defined by the magnetic field lines intercepting with the screen grid, the confinement region of the optimized 2.45 GHz cross magnetic field takes the shape of hourglass, enabling the high increasing-rate of I_b with respect to P_w in high power discharges at high gas flow rates.Correlated with the accompanied bright boundary layer appearing in the differentiated image, the sudden drop of I_b in the low gas flow rate regime is attributed to the discharge ignited by the enhanced extraordinary wave in the ECR layer neighbouring the narrowest confinement region,where the produced ions can promptly enter the loss region.  相似文献   

10.
《等离子体科学和技术》2015,17(12):1078-1082
The impedance matching is crucial for continuous wave operation of ion cyclotron resonance heating(ICRH) antennae with high power injection into plasmas.A sudden increase in the reflected radio frequency power due to an impedance mismatch of the ICRH system is an issue which must be solved for present-day and future fusion reactors.This paper presents a method for theoretical analysis of ICRH system impedance matching for a triple liquid stub tuner under plasma operational conditions.The relationship of the antenna input impedance with the plasma parameters and operating frequency is first obtained using a global solution.Then,the relations of the plasma parameters and operating frequency with the matching liquid heights are indirectly obtained through numerical simulation according to transmission line theory and matching conditions.The method provides an alternative theoretical method,rather than measurements,to study triple liquid stub tuner impedance matching for ICRH,which may be beneficial for the design of ICRH systems on tokamaks.  相似文献   

11.
A voltage breakdown in an ion cyclotron resonance heating (ICRH) system is usually detected as an abrupt change in the module of the reflection coefficient |Γin| at the power source output. The same effect can be due to a large load variation. This paper presents the study of some new concept for detecting voltage breakdowns in ICRH Resonant Double Loop (RDL) systems, to be used in conjunction with the one identifying an arc by the detection of an excessive standing wave ratio (SWR), either at the operating frequency or within the band below the operating frequency. The method should be able to help discriminating fast load variations from voltage breakdowns in any of the in-vessel components under the torus vacuum, and therefore selecting the proper corrective action.  相似文献   

12.
First CW test bed, devoted for ion cyclotron resonance heating (ICRH), is being built at CEA Cadarache. It has been designed for testing the ICRH antenna sub assemblies under ITER relevant conditions (vacuum, cooling and RF).This paper presents a technical overview of these facilities and discusses their future operations in the framework of the ITER ICRH European R&D program.  相似文献   

13.
Simulations of first-orbit losses of neutral beam injection(NBI) fast ions in the EAST tokamak have been studied in detail by using the orbit-following code GYCAVA and the NBI code TGCO. Beam ion losses with the wall boundary are smaller than those with the last closed flux surface boundary. In contrast to heat loads on the wall without radio frequency wave(RFW)antennas, heat loads on the wall with RFW antennas are distributed more locally near the RFW antennas. The direction of the toroidal magnetic field dramatically affects the final positions of lost fast ions, which is related to the magnetic drift. The numerical results on heat loads of beam ions corresponding to different toroidal magnetic fields are qualitatively consistent with the experimental results. Beam ion losses increase with the beam energy for the co-current NBIs and the counter-perpendicular NBI. We have studied the behavior of fast ions produced by a small section neutral beam(beamlet) by using the numerical tool NBIT. The distributions of the loss fraction of beamlet fast ions peaked near the edge of the beam section for the counter-current NBIs, and they are related to the injection angle. This indicates that the first-orbit losses can be reduced by changing the shape of beam cross section.  相似文献   

14.
NBI fast ion losses in the presence of the toroidal field ripple on EAST have been investigated by using the orbit code GYCAVA and the NBI code TGCO. The ripple effect was included in the upgraded version of the GYCAVA code. It is found that loss regions of NBI fast ions are mainly on the low field side near the edge in the presence of ripple. For co-current NBIs, the synergy effect of ripple and Coulomb collision on fast ion losses is dominant, and fast trapped ions located on the low field side are easily lost. The ripple well loss and the ripple stochastic loss of fast ions have been identified from the heat loads of co-current NBI fast ions. The ripple stochastic loss and the collisioninduced loss are much larger than the ripple well loss. Heat loads of lost fast ions are mainly localized on the right side of the radio frequency wave antennas from the inside view toward the first wall. For counter-current NBIs, the first orbit loss due to the magnetic drift is the dominant loss channel. In addition, fast ion loss fraction with ripple and collision for each NBI linearly increases with the effective charge number, which is related to the pitch angle scattering effect.  相似文献   

15.
The fast ferrite tuning (FFT) real-time matching system has been designed and tested for the ion cyclotron range of frequency (ICRF) in EAST tokamak, which is necessary to transfer ICRF power to the plasma against variations in the antenna impedance. Through the test results, we proved this FFT system is feasible in EAST. Therefore this system have been upgraded recently to achieve real-time matching by the upgrading of the coil power supply and optimizing of the tuning structure. Finally the new FFT system achieved a response time of 10 ms and operated with a peak power of 1.5 MW, which satisfied the requirements of matching system in EAST.  相似文献   

16.
基于传输线理论,采用三支节液态调配器以达到托卡马克离子回旋共振加热(ICRH)时射频源和天线负载间的阻抗匹配。分析了其阻抗匹配过程,并根据阻抗匹配条件得到天线输入阻抗变化时,三支节液态调配器的优化调配参数。利用数值模拟验证了在其他实验参数相同的条件下,三支节液态调配器的优化调配参数能使天线系统获得良好的匹配状态。  相似文献   

17.
The equilibrium reconstruction is important to study the tokamak plasma physical processes.To analyze the contribution of fast ions to the equilibrium,the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics,kinetic diagnostics and TRANSP code.It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region.The fast-ion current contributes mainly in the core region while contributes little to the pedestal current.A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current.It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.  相似文献   

18.
基于闪烁体原理的快离子损失探针(Fast Ion Loss Detector,FILD),可以同时测量损失快离子的能量和pitch-angle的值,是核聚变装置中对高能粒子诊断的重要方式。根据先进实验超导托卡马克(Experimental Advanced Superconducting Tokamak,EAST)的发展需求,为了更好地对损失快离子行为进行研究,设计并安装了快离子损失诊断,且探测到在中性束加热条件下产生的损失快离子。同时,探测到在放电中产生的逃逸电子,以及低杂波注入时快电子产生X射线对快离子损失背景信号的影响。并且在H-mode放电时边界扰动也对快离子损失信号产生影响,这些探测到的现象都为不断升级损失诊断系统提供依据。  相似文献   

19.
During ion cyclotron resonance heating, the sheath power dissipation caused by ion acceleration in the radio frequency(RF) sheath is one of the main causes of RF power loss in the tokamak edge region. To estimate the power dissipation of an RF sheath in the ion cyclotron range of frequency(ICRF), a 1 D fluid model for the multi-component plasma sheath driven by a sinusoidal disturbance current in the ICRF is presented. By investigation of the sheath potential and ion flux at the wall, it is shown that the larger frequency and lower amplitude of the disturbance current can cause smaller sheath power dissipation. The effect of the energetic ion on the sheath power dissipation depends on the disturbance current. For large amplitude of disturbance current, the increase in the concentration and energy of the energetic ion leads to a decrease in sheath power dissipation. While for a small disturbance current, the sheath power dissipation demonstrates non-monotonic variation with the concentration and energy of the energetic ion. In addition, the sheath power dissipation is found to have a small increase in the presence of light impurity ions with low valence.  相似文献   

20.
For low single-pass absorption of ion cyclotron range frequency (ICRF) wave in the EAST plasma cavity modes are expected to be excited between the low field side (LFS) antenna and the hybrid cut-off layer. The toroidal spectrum for D(H) minority heating scenarios in EAST is modeled by using FELICE(Finite Elements Ion Cyclotron Emulator), a full wave code based on plane-stratified geometry. The excitation of cavity modes is studied. The methods for suppressing cavity modes are also discussed, to increase the efficiency of minority ion heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号