首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

2.
In this paper,we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model.The results show that,the DBDs driven by positive pulse,negative pulse and bipolar pulse possess different behaviors.Moreover,the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes.For the case of the positive pulse,the breakdown field is much lower than that of the negative pulse,and its propagation characteristic is different from the negative pulse DBD.When the DBD is driven by a bipolar pulse voltage,there exists the interaction between the positive and negative pulses,resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors.In addition,the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.  相似文献   

3.
A combined method of granular activated carbon (GAC) adsorption and bipolar pulse dielectric barrier discharge (DBD) plasma regeneration was employed to degrade phenol in water. After being saturated with phenol, the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters. The results showed that different peak voltages, air flow rates, and GAC content can affect phenol decomposition and its major degradation intermediates, such as catechol, hydroquinone, and benzoquinone. The higher voltage and air support were conducive to the removal of phenol, and the proper water moisture of the GAC was 20%. The amount of H2O2 on the GAC was quantitatively determined, and its laws of production were similar to phenol elimination. Under the optimized conditions, the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy,and the total removal of organic carbons achieved 50.4%. Also, a possible degradation mechanism was proposed based on the HPLC analysis. Meanwhile, the regeneration efficiency of the GAC was improved with the discharge treatment time, which attained 88.5% after 100 min of DBD processing.  相似文献   

4.
Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length.The discharge images,optical emission spectra (OES),the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained.When airflow rate is increased,the transition of the discharge mode and the variations of discharge intensity,breakdown characteristics and the temperature of the discharge plasma are investigated.The results show that the discharge becomes more diffuse,discharge intensity is decreased accompanied by the increased breakdown voltage and time lag,and the temperature of the discharge plasma reduces when airflow of small vclocity is introduced into the discharge gap.These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.  相似文献   

5.
A kind of dielectric barrier discharge(DBD) device composed of water electrodes with 3×3forms can produce large-area low-temperature plasmas at atmospheric pressure.To reflect the discharge characteristics of DBD better,a dynamic simulation model,which is based on the voltage controlled current source(CCS),is established,then the established model in Matlab/Simulink is used to simulate the DBD in air.The voltage-current waves and Lissajous at a voltage of 10 kV,11 kV and 12 kV peak value with a frequency of 15 kHz are studied.The change of the discharge power of DBD with a different amplitude and frequency of applied voltage is also analyzed.The result shows the voltage-current waves,Lissajous and discharge power of DBD under different conditions from the simulation agree well with those of the experiment.In addition,we propose a method to calculate the dielectric barrier capacitance C_d and the gap capacitance C_g,which is valid through analyzing the variation of capacitance at different voltage amplitudes.  相似文献   

6.
Ultrafine particles(UFPs) are harmful to human beings, and their effective removal from the environment is an urgent necessity. In this study, a dielectric barrier discharge(DBD) reactor packed with porous alumina(PA) balls driven by a pulse power supply was developed to remove the UFPs(ranging from 20 to 100 nm) from the exhaust gases of kerosene combustion. Five types of DBD reactors were established to evaluate the effect of plasma catalysis on the removal efficiency of UFPs. The influences of gas flow rate, peak voltage and pulse frequency of different reactors on UFPs removal were investigated. It was found that a high total UFP removal of91.4% can be achieved in the DBD reactor entirely packed with PA balls. The results can be attributed to the enhanced charge effect of the UFPs with PA balls in the discharge space. The UFP removals by diffusion deposition and electrostatic attraction were further calculated,indicating that particle charging is vital to achieve high removal efficiency for UFPs.  相似文献   

7.
A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet(UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity;under the highest conductivity condition, the degradation rate could rise to 99%.  相似文献   

8.
In this paper,unipolar pulse (including positive pulse and negative pulse) and bipolar pulse voltage are employed to generate diffuse gas-liquid discharge in atmospheric N2 with a trumpet-shaped quartz tube.The current-voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H2O2,NO2-,and NO3-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species (OH(A),and O(3p)) in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min-1 of gas flow rate.The absorbance intensities of NO2 and N2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species (N2(C),OH(A),and O(3p)),nitrogen oxides (NO2,NO,and N2O),and higher production of aqueous H2O2,NO2-,and NO3-compared with both unipolar positive and negative discharges.  相似文献   

9.
Application of DBD and DBCD in SO2 Removal   总被引:2,自引:0,他引:2  
The dielectric barrier corona discharge(DBCD) in a wire-cylinder configuration and the dielectric barrier discharge(DBD) in a coaxial cylinder configuration are studied. The discharge current in DBD has a higher pulse amplitude than in DBCD. The dissipated power and the gas-gap voltage are calculated by analyzing the measured Lissajous figure. With the increasing applied voltage, the energy utilization factor for SO2 removal increases in DBCD but decreases in DBD because of the difference in their electric field distribution. Experiments of SO2 removal show that in the absence of NH3 the energy utilization factor can reach 31 g/kWh in DBCD and 39 g/kWh in DBD.  相似文献   

10.
The dielectric barrier discharge(DBD) in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments. In this paper, the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified. It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap. The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode. The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature, which is beneficial for industrial applications. This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD, which can provide some references for the development and applications of the DBD in the future.  相似文献   

11.
Through using a direct-current driven plasma jet operated underwater, degradation of methylene blue(MB) is investigated with air and oxygen used as working gases. With a low power voltage,a plasma plume extends from the needle electrode, which is purple in air. It turns pink after it bridges the two electrodes. During the process, oxygen plasma remains white. Discharge operates in a pulsed mode or a continuous one, which depends on the magnitude of power voltage. For the pulsed mode, oxygen discharge has a shorter plume and a higher pulse frequency than air discharge under the same power voltage. For the same current of the continuous mode, both power and gap voltages of oxygen discharge are higher than those of air discharge. Moreover, MB degradation efficiency increases with increasing power voltage or initial concentration of MB solution. Compared with air discharge, oxygen discharge has a higher degradation efficiency with the same power voltage and treatment time. The pulsed oxygen discharge with power voltage of about 6.5 k V has the highest efficiency in degrading MB dye, reaching approximately 85.8% after 10 min treatment. As a comparison, after 10 min treatment in air discharge, the highest degradation efficiency is 63.7%, which appears in the continuous mode at a power voltage of 10.6 kV. Besides, optical spectra from the discharges are also compared for the two types of working gases.  相似文献   

12.
Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out,and the influence of CO2 flow rate,plasma power,discharge voltage,discharge frequency on CO2 conversion and process energy efficiency were investigated.It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap,and the electron amount was proportional to the discharge power;the energy efficiency of CO2 conversion was almost a constant at a lower level,which was limited by CO2 inherent discharge character that determined a constant gap electric field strength.This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased.Therefore,one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma,but the energy efficiency is difficult to improve.  相似文献   

13.
In this paper, polyethylene terephthalate and polyethylene films were plasma treated using a dielectric barrier discharge (DBD), which presents a second current pulse with inverse polarity induced at the decreasing applied voltage flank in addition to the main current pulse. The surface modifications of polymer samples were pointed out by two complementary methods: the contact angle method and atomic force microscopy (AFM) technique. The influence of the voltage pulse parameters as width, falling rate and frequency on the secondary discharge formation was studied and correlated with polymer surface modifications. The plasma treatment is improved when the discharge is driven by a voltage pulses with very fast falling flank. After plasma treatment, roughness of the PE films is not considerably changed; only topographical modifications of PE treated samples being observed, while treated PET surfaces present an increased roughness and a new granular structure, with much smaller features compared to the pristine ones.  相似文献   

14.
Air pollution is a major health problem in developing countries and has adverse effects on human health and the environment. Non-thermal plasma is an effective air pollution treatment technology. In this research, the performance of a dielectric barrier discharge (DBD) plasma reactor packed with glass and ceramic pellets was evaluated in the removal of SO2 as a major air pollutant from air in ambient temperature. The response surface methodology was used to evaluate the effect of three key parameters (concentration of gas, gas flow rate, and voltage) as well as their simultaneous effects and interactions on the SO2 removal process. Reduced cubic models were derived to predict the SO2 removal efficiency (RE) and energy yield (EY). Analysis of variance results showed that the packed-bed reactors (PBRs) studied were more energy efficient and had a high SO2 RE which was at least four times more than that of the non-packed reactor. Moreover, the results showed that the performance of ceramic pellets was better than that of glass pellets in PBRs. This may be due to the porous surface of ceramic pellets which allows the formation of microdischarges in the fine cavities of a porous surface when placed in a plasma discharge zone. The maximum SO2 RE and EY were obtained at 94% and 0.81 g kWh−1, respectively under the optimal conditions of a concentration of gas of 750 ppm, a gas flow rate of 2 l min−1, and a voltage of 18 kV, which were achieved by the DBD plasma packed with ceramic pellets. Finally, the results of the model's predictions and the experiments showed good agreement.  相似文献   

15.
In this paper, three dielectric barrier discharge(DBD) configurations, which were plain DBD with no packing, DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers, were employed to investigate the effect and catalytic mechanism of catalyst materials in a packed-bed ozone generator. From the experimental results, it was clear that the DBD configuration with packed pure fibers and packed loaded fibers promotes ozone generation. For the packed-bed reactor, ozone concentration and ozone yield were enhanced by an increase of electric field in the discharge gap with the packed-bed effect. Meanwhile, the enhancement of ozone concentration and yield for the DBD reactor packed by loaded fibers with silica nanoparticles was due to the catalysis of silica nanoparticles on the fiber surface. The adsorption of silica nanoparticles on the fiber surface can prolong the retention time of active species and enhance surface reactions.  相似文献   

16.
In this paper,unipolar pulse (including positive pulse and negative pulse) and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N_2with a rumpetshaped quartz tube.The current–voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H_2O_2,NO_2~-,andNO_3~-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species (OH(A),and O(3p)) in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min~(-1)of gas flow rate.The absorbance intensities of NO_2and N_2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species (N_2(C),OH(A),and O(3p)),nitrogen oxides (NO_2,NO,and N_2O),and higher production of aqueous H_2O_2,NO_2~-,andNO_3~-compared with both unipolar positive and negative discharges.  相似文献   

17.
An atmospheric-pressure dielectric barrier discharge(DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO_2 nanoparticles in an aqueous solution with the assistance of[C_2MIM]BF_4 ionic liquid(IL) and using air as the working gas.The influences of the discharge voltage,IL and the amount of copper nitrite were investigated.X-ray diffraction,N_2adsorption-desorption measurements and UV-Vis spectroscopy were adopted to characterize the samples.The results showed that the specific surface area of TiO_2 was promoted with Cu-doping(from 57.6 m~2·g~(-1) to 106.2 m~2·g~(-1) with 3%Cu-doping),and the content of anatase was increased.Besides,the band gap energy of TiO_2 with Cu-doping decreased according to the UV-Vis spectroscopy test.The 3%Cu-IL-TiO_2 samples showed the highest efficiency in degrading methylene blue(MB) dye solutions under simulated sunlight with an apparent rate constant of 0.0223 min~(-1),which was 1.2 times higher than that of non-doped samples.According to the characterization results,the reasons for the high photocatalytic activity were discussed.  相似文献   

18.
With the rapid increase in the number of cars and the development of industry, nitrogen oxide(NO_x)emissions have become a serious and pressing problem. This work reports on the development of a water-cooled dielectric barrier discharge reactor for gaseous NOxremoval at low temperature. The characteristics of the reactor are evaluated with and without packing of the reaction tube with 2 mm diameter dielectric beads composed of glass, ZnO, MnO_2, ZrO_2, or Fe_2O_3. It is found that the use of a water-cooled tube reduces the temperature, which stabilizes the reaction, and provides a much greater NO conversion efficiency(28.8%) than that obtained using quartz tube(14.1%) at a frequency of 8 k Hz with an input voltage of 6.8 k V. Furthermore,under equivalent conditions, packing the reactor tube with glass beads greatly increases the NO conversion efficiency to 95.85%. This is because the dielectric beads alter the distribution of the electric field due to the influence of polarization at the glass bead surfaces, which ultimately enhances the plasma discharge intensity. The presence of the dielectric beads increases the gas residence time within the reactor. Experimental verification and a theoretical basis are provided for the industrial application of the proposed plasma NO removal process employing dielectric bead packing.  相似文献   

19.
To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were studied.We found that the region with a strong electric field,which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure,provided the initial electron for the entire discharge process.Thus,the discharge voltage was reduced.The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons.Thus,the transient current pulse discharge was reduced significantly,and an APGD in air was achieved.We designed double layer line-line contact electrodes,which can generate the APGD on the surface of a material under treatment directly.A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope(SEM).Two electrode structures–the multi-row line-line and double-helix line-line contact electrodes–were designed.A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes.This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.  相似文献   

20.
To improve the'detonation-supporting'performance of fuel-rich catalytic combustion products,DBD plasma,stimulated by adjustable nanosecond pulse power supply,was used to further regulate the components and concentrations of the hydrocarbon blends.In this paper,the parameters including load voltage,frequency,rising(falling)edge,pulse width and feeding flow rate were changed respectively,and the corresponding concentration and proportion change of the components in blend gas were investigated.According to the experiment result,it was found that when the discharge frequency is low,the plasma mainly promotes the transformation of light gaseous substances,while it mainly promotes the conversion to heavy hydrocarbons when the frequency is larger.Increasing load voltage will strengthen this trend.The controlling and reforming effect of plasma on the blend gas will decrease with the increase of voltage rising(falling)edge and the feeding flow rate.The regulation effect will be strengthened with the increase of pulse width under 200 ns.With the increase of discharge intensity,the'carbon'settles on the walls of the reactor,which will change the dielectric constant,leading to the loss of control of the discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号