首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the velocity and width in coflow argon jet inlet on the flow characteristics of laminar argon thermal plasma jet flowing into the cold air have been studied by the large eddy simulation methods. The Kelvin–Helmholtz instability between argon thermal plasma jet and coflow argon jet causes the transition from a laminar jet to a turbulent jet in the presence of coflow argon jet. Moreover, increasing the velocity and width in coflow argon jet inlet can enhance turbulent transport and provoke coherent structure in the downstream of thermal plasma jet. And the mixing characteristics between argon thermal plasma, coflow argon and ambient air are strengthened. In addition, the width in coflow argon jet inlet has a significant effect on the distribution of temperature in the upstream of thermal plasma jet. It was also found that the transition occurs in advance with the increase of velocity and width in coflow argon jet inlet.  相似文献   

2.
在子通道雷诺数为6 600、13 200、26 400和39 600下,使用粒子成像测速仪对5×5棒束分流型交混翼定位格架下游横向和纵向流动进行测量。平均速度和湍流脉动速度均方根的实验结果最大不确定度低于1%的主流平均速度。格架下游二次流结构经历了交混翼脱落涡结构耗散、剪切产生双涡结构、双涡结构向单涡结构的转变及单涡结构沿程衰减过程,横向平均速度和湍流脉动速度均方根沿程变化均受涡结构演进影响。格架近场湍流统计量迅速衰减;格架远场湍流统计量缓慢衰减,流动趋于光棒束充分发展流动。横向流动受雷诺数效应和格架交混效应共同影响。  相似文献   

3.
In this paper, the effect of dielectric-barrier discharge plasma excitation characteristics on turbulent boundary layer separation over a hump is investigated using computational fluid dynamics. Four different turbulence models were used for verification. The Reynolds stress model showed the best agreement with the experimental data, in general. Based on the verification and validation, the effect of duty cycle and excitation frequency on the turbulent flow separation were investigated. The results showed that the pulsed plasma excitation could effectively suppress the flow separation by mixing augmentation. With increasing duty cycle and excitation frequency, the flow separation first increased, then decreased again. The optimal duty cycle was 0.75 and the optimal excitation frequency was 50 Hz.  相似文献   

4.
《核技术(英文版)》2016,(1):149-155
A numerical simulation study was performed to clarify the thermal mixing characteristics of coolant in the core bottom structure of the high-temperature gas-cooled reactor(HTR). The flow field and temperature field in the hot gas chamber and the hot gas duct of the HTR were obtained based on the commercial computational fluid dynamics(CFD) program. The numerical simulation results showed that the helium flow with different temperatures in the hot gas mixing chamber and the hot gas duct mixed intensively, and the mixing rate of the temperature in the outlet of the hot gas duct reached 98 %. The results indicated many large-scale swirling flow structures and strong turbulence in the hot gas mixing chamber and the entrance of the hot gas duct, which were responsible for the excellent thermal mixing of the hot gas chamber and the hot gas duct. The calculated results showed that the temperature mixing rate of the hot gas chamber decreased only marginally with increasing Reynolds number.  相似文献   

5.
Large eddy simulation based on the Smagorinsky dynamic sub-grid scale model in combination with the multiphase volume of fluid (VOF) model, was used to simulate the flow of two turbulent plunging water jets. The jets were intended to simulate a weakly disturbed jet with low turbulence content and a highly disturbed jet with a profile almost fully-developed at the exit Reynolds number of 9000. The simulation captured successfully the previous experimentally-observed topological phenomena taking place during the transient impact and continuous-entrainment regime. It showed that surface instabilities in the free jet, due to its turbulence content have remarkable effect on submerged interfacial area, air volume, and air-entrainment rate. The simulation predicted an air entrainment rate within the range of semi-empirical correlations. The calculated mean velocity field exhibited almost identical trends for both. The combination of the LES-VOF models achieved a reasonably good level of agreement with experimental and empirical results.  相似文献   

6.
Experimental results are presented on fully developed turbulent flow through simulated heterogeneous rod bundle subchannels. The emphasis of this study is on the universality of the cross-gap turbulence convection transport with respect to symmetric versus asymmetric subchannels. The flow passage was formed by a rod asymmetrically mounted in a trapezoidal duct. The Reynolds number based on the equivalent hydraulic diameter and bulk average axial velocity is 26 300. The measurements include mean axial velocities, r.m.s. values of the fluctuating velocity components and the energy density spectra. The results demonstrate the existence of an unusual region near the asymmetric rod-to-wall gap characterized by high levels of axial turbulence intensity with a remarkably different type of distribution compared with a normal boundary layer. It is also shown that the strength of the cross-gap transport is subchannel geometry dependent. The distributions of wall shear stress and turbulence kinetic energy indicate that mean convection by secondary flow is also an important transport mechanism that should be taken into account in the analysis of momentum/heat transfer in rod bundle subchannels.  相似文献   

7.
The investigation of flow and heat transfer of turbulent pulsating flow is of vital importance to the nuclear reactor thermal hydraulic analysis in ocean environment. In this paper, the flow and heat transfer of turbulent pulsating flow is analyzed. The calculation results are firstly verified with experimental data. The agreement between them is satisfactory. The effect of spanwise and wall-normal additional forces is significant in small Reynolds number, and decreases with Reynolds number increasing. The rolling axis and rolling radius contribute slight to the flow and heat transfer. The effect of velocity oscillation period on the heat transfer is limited than that of Reynolds number and oscillating velocity Reynolds number. The traditional empirical correlations could not predict the flow and heat transfer of turbulent pulsating flow in rolling motion.  相似文献   

8.
The pressure drop and heat transfer characteristics of wire-wrapped 19-pin rod bundles in a nuclear reactor subassembly of liquid metal cooled fast breeder reactor (LMFBR) have been investigated through three-dimensional turbulent flow simulations. The predicted results of eddy viscosity based turbulence models (k-?, k-ω) and the Reynolds stress model are compared with those of experimental correlations for friction factor and Nusselt number. The Re is varied between 50,000 and 150,000 and the ratio of helical pitch of wire wrap to the rod diameter is varied from 15 to 45. All the three turbulence models considered yield similar results. The friction factor increases with reduction in the wire-wrap pitch while the heat transfer coefficient remains almost unaltered. However, reduction in the wire-wrap pitch also enhances the transverse flow velocity in the cross-sectional plane as well as the local turbulence intensity, thereby improving the thermal mixing of coolant. Consequently, the presence of wire wrap reduces temperature variation within each section of the subassembly. The associated reduction in differential thermal expansion of rods is expected to improve the structural integrity of the fuel subassembly.  相似文献   

9.
A theoretical analysis has been performed to study molecular and turbulent transport phenomena between subchannels of infinite bare rod arrays at laminar, transition and turbulent flow conditions. For this investigation, the theoretical approach of Ramm and Johannsen for predicting turbulent momentum and heat transfer in rod bundles has been extended to evaluate three-dimensional temperature fields. Results are presented enabling the prediction of the onset and growth of laminarization in typical subchannels of square and triangular rod arrays. These results are further applied to interpret the characteristic effects of variations in Reynolds number, Prandtl number or geometric spacing on integral exchange parameters as the thermal mixing flow rate and mixing length scale. These results are of particular significance relative to the explanation of recent data from tracer-type mixing experiments and also exhibit the importance of secondary flow effects on turbulent intersubchannel energy transport. In view of these findings, the physical relevance of current correlations derived from integral-type experiments to numerically predict exchange coefficients for use in lumped parameter subchannel analysis codes is discussed.  相似文献   

10.
A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using optical and electrical methods,the discharge characteristics are investigated for the diffuse plasma plume.Results indicate that the discharge has a pulse characteristic,under the excitation of a DC voltage.The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode.It is found that,with an increment of the gas flow rate,both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode,reach their minima at about1.5 L/min,and then slightly increase in the turbulent mode.However,the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min,and then slightly decreases in the turbulent mode.  相似文献   

11.
为了提高核反应堆系统的经济性和安全性,本文采用CFD方法对棒束子通道间湍流交混效应进行研究。对子通道建模,选取SST k-ω模型进行计算,完成了网格敏感性分析。采用类比浓度计算法与间隙湍流热流法对湍流交混系数进行计算。计算结果表明:雷诺数较小时,单相湍流交混系数随雷诺数的增大而增大;当雷诺数达到一定值时,单相湍流交混系数近似为定值;采用类比浓度计算法与间隙湍流热流法计算所得的湍流交混系数无太大差别。本文拟合得到了适用于单相工况的湍流交混系数计算公式。  相似文献   

12.
A system of parallel jets is widely encountered in many industrial applications. Wide spread applications necessitate the study of the basic mixing phenomenon of parallel jets. In the present study, the mixing phenomenon in the two jet flow and the three jet flow has been studied numerically by solving the Reynolds Averaged Navier Stokes equations. The results predicted by the Reynolds stress model compare well with the experimental data of axial velocity and shear stress available in literature. An attempt has been made to predict the critical mixing regions such as the merge point and the combine point by correlating them with jet spacing and jet exit conditions. A comparison between single jet, two jet and three jet systems has been carried out to evaluate the effect of presence of the second and the third jet on the mixing phenomenon and turbulent fluctuations.  相似文献   

13.
Suitable analysis methodology is required to obtain detailed information about magnitude and frequency of temperature variation of flow field for the study of thermal stripping phenomena. The large eddy simulation (LES) is applied to analyze unsteady turbulent triple jet water flow which can be a direct cause of thermal stripping. Current analyses are performed with different sub-grid scale models, number of grids, time increments, and inlet temperature intensities to find the effects of these on prediction. Predicted results of the LES are compared with experimental results. The LES successfully produces a time history of turbulence variables, which can be used to evaluate magnitude and frequency of instantaneous temperature. The LES tends to predict higher levels of root mean square temperatures compared to those of an experiment, indicating very active mixing effect among triple jets. The LES is found to be able to provide reliable frequency information about temperature fluctuation. The different sub-grid scale models show no significant difference in prediction ability and other variations of the LES prediction show no significant difference in prediction either. However, cases using the fine grid and the small time increment are slightly better than others. Further study is desired with different levels of inlet temperature intensities and separate sub-grid scale models for temperature field.  相似文献   

14.
Models of a single-phase liquid-into-liquid buoyant jet and a two-phase vapor-into-liquid turbulent jet-plume injected in horizontal orientation were developed for analyzing the dynamics of the mixing characteristics and thermal response for shallow submergence of the source in large pools. These models were developed from the Reynolds averaged Navier-Stokes equations in the cylindrical system for steady axisymmetric flow and incorporated the integral plume theory. The bases for the general assumptions such as self-similarity and use of Gaussian profiles to represent the velocity field across the effluent cross-section are examined. Subroutines were developed to reproduce the governing differential equations formulated from the continuity, momentum and conservation of buoyancy or energy equations which treats the jet-plume's half-width, velocity and temperature as variables and seek solutions of these variables along the jet-plume trajectory. Information on empirical closure relations obtained from experimental data such as the coefficient-of-entrainment, bubble slip velocity, momentum amplification factor, and plume spread-ratios for buoyancy and density-defect which are available for adiabatic cases were applied to the case of steam-into-water. Solutions were obtained without cross-flow in a linearly stratified ambient and then with cross-flow in a homogeneously mixed ambient for the single-phase formulation that represents a complete condensation scenario of a buoyant jet. The model was finally extended to the turbulent two-phase jet-plume case and the results were compared to available jet-plume pool condensation data. The analysis and results proved to be comparable to experimental data in predicting the pool surface temperature to within 0.5 °C, however, temperature fluctuations along the jet-plume path were not adequately captured by the model since an oscillating input component was not incorporated in the model formulation; indeed the pool surface temperature proved to be of higher importance, which was adequately captured by the model.  相似文献   

15.
Results are presented from the application of a finite-volume calculation method to fully-developed axial turbulent flow in various smooth rod bundle arrangements. Simplified algebraic versions of the Reynolds stress transport equations are used in the calculation of the full three dimensional velocity field, without any special adjustments for each geometry. The predictions obtained for different rod spacings compare favourably with experiment and reveal the significant role of the cross-plane turbulence-driven secondary flow in shaping the mean flow and turbulence distributions. The success of the results obtained establish the effectiveness of the method and encourage further applications and development.  相似文献   

16.
扩散角对文丘里管内湍流影响的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究扩散角对文丘里管内湍流的影响,采用立体粒子图像测速技术分别对扩散角度为10°、12.5°、15°以及20°的文丘里管扩散段区域进行了测量,得到了平均速度分布,并通过瞬时速度场的统计分析得到了扩散段湍动能分布情况。研究表明,不同扩散角度的文丘里管扩散段内平均速度在截面直径方向成轴对称的单峰分布,湍动能在截面直径上成轴对称的双峰分布,在各试验工况下扩散段内均发生流动分离现象。随扩散角度增加,湍动能峰值增加,主流区径向宽度未发生变化,分离流区径向宽度增加,但对分离流区所占比例的影响较小,高湍动能区变宽;随着雷诺数的增加,湍动能峰值增加,主要由轴向雷诺应力引起,分离流区所占比例略有降低,但主流区和分离流区分布变化较小。此研究为高雷诺数不同角度的文丘里管流场研究提供了实验基础。   相似文献   

17.
The heat transfer of turbulent pulsating flow is of vital importance in nuclear reactor thermal hydraulic analysis in ship motions. In this paper, the heat transfer behavior of turbulent pulsating flow is analyzed. The calculation results are verified with experimental data, with satisfactory agreement obtained. The effect of span-wise and transverse additional forces decreases with Reynolds number increasing and is significant in low Reynolds number. The effect of velocity oscillation period on the heat transfer is more limited than the effect of Reynolds number and oscillating velocity Reynolds number.  相似文献   

18.
A two component laser doppler velocimeter with polarized beams and frequency shift was used to measure the turbulent flow field for axial flow between the rods of a nine rod, square pitch rod bundle. Parameters measured include mean axial and lateral velocities, turbulence intensities and the friction factor. The axial velocities for 10000 to 40000 Reynolds number are slightly higher than those reported by Rowe. The maximum lateral velocities measured are about 1% of the bulk velocity; somewhat larger than suggested by earlier authors. Axial and lateral turbulence intensities are larger than those in pipe flows.  相似文献   

19.
为研究各种流态下核设施烟囱内气体混合均匀性情况,应用计算流体力学(CFD)方法,建立了仿真模型,主烟囱内雷诺数范围800~70000。仿真结果表明:雷诺数变化对于主烟道风速分布有重要影响;8倍水力直径以下,随监测截面升高,风速分布将更为均匀,8倍水力直径以上,一定程度内增强湍流,可提高风速分布均匀性,流态处于完全湍流后,继续提高雷诺数对风速的分布均匀性无益;对于示踪气体,各监测截面均达到了较充分的混合,管道内雷诺数低于29000时,其在各截面上的混合均匀性伴随雷诺数升高有细微的降低,雷诺数超过29000后混合均匀性变化不再显著。对比仿真结果与试验结果,风速及示踪气体浓度仿真结果与试验测量值具有较好的一致性。  相似文献   

20.
采用URANS(UnsteadyReynoldsAveragedNavierStokes)方法对不同棒束结构稠密栅元通道(P/D=1.001~1.2)内的湍流流动进行CFD模拟。研究分析了不同Re(Re=5000~215000)的湍流流动的主流速度、壁面剪应力、湍动能等参数。研究表明:在较稠密的棒束(P/D<1.1)通道内,P/D的变化对子通道内主流速度和剪应力分布均有较大影响。本文的模拟结果也验证了在达到临界P/D前(即使δ/D<0.011),交混因子Y和δ/D成反比关系。对于固定的棒束结构(P/D=1.062),当Re达到一定值(Re=9600)时,子通道内主流速度和剪应力分布对Re的变化不敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号