首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 863 毫秒
1.
In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster,the thermal deformation,upstream ion density and component lifetime of the grids are simulated with finite element analysis,fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test.The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results.The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW.In 5 kW mode,the decelerator grid shows the most serious corrosion,the accelerator grid shows moderate corrosion,and the screen grid shows the least amount of corrosion.With the serious corrosion of the grids in 5 kW operation mode,the intercept current of the acceleration and deceleration grids increases substantially.Meanwhile,the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm,while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation.At equilibrium temperature with 5 k W power,the finite element method(FEM)simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm.Accordingly,the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm.According to the fluid method,the plasma density simulated in most regions of the discharge chamber is 1?×?10~(18)-8?×?10~(18)m~(-3).The upstream plasma density of the screen grid is in the range 6?×?10~(17)-6?×?10~(18)m~(-3)and displays a parabolic characteristic.The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status.The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5?×?10~(-14)kg s~(-1)and 4.28?×?10~(-14)kg s~(-1),respectively,while after the thermal deformation of the triple grids,the ion beam current has over-perveance status.The ion sputtering rates of the accelerator grid hole and the decelerator hole are 1.41?×?10~(-13)kg s~(-1)and 4.1?×?10~(-13)kg s~(-1),respectively.The anode current is a key factor for the triple grid lifetime in situations where the structural strength of the grids does not change with temperature variation.The average sputtering rates of the accelerator grid and the decelerator grid,which were measured during the 1500 h lifetime test in5 k W operating conditions,are 2.2?×?10~(-13)kg s~(-1)and 7.3?×?10~(-13)kg s~(-1),respectively.These results are in accordance with the simulation,and the error comes mainly from the calculation distribution of the upstream plasma density of the grids.  相似文献   

2.
In this work,a zero-dimensional plasma model for self-field magnetoplasmadynamic thrusters(SF-MPDTs) is proposed,which is based on the ion-number balance equation and energy balance equation,and can calculate the average electron temperature and the average ion temperature inside the discharge chamber conveniently.At the same time,the model can also predict the thruster performance,and the thruster performance predicted by the model is compared with experimental results,which proved the reliability of the model.  相似文献   

3.
In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process,a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 k W operation mode.Meanwhile,the fluid simulation method and particle-in-cell-Monte Carlo collision(PICMCC) method are adopted to simulate the ion extraction process according to the previous test results.The numerical calculation results are verified by the ion thruster performance test.The results show that after about 1.2 h operation,the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm,while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium,and the hot gap is almost unchanged.In addition,the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value.Fluid simulation results show that the plasma density of the screen grid is in the range 6?×10~(17)–6?×?10~(18) m~(13) and displays a parabolic characteristic,while the electron temperature gradually increases along the axial direction.The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant.Meanwhile,the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap.The ion beam current has optimal perveance status without thermal deformation,and the intercepted current of the accelerator grid and the decelerator grid are 3.65 m A and 6.26 m A,respectively.Furthermore,under the effect of thermal deformation,the ion beam current has over-perveance status,and the intercepted current of the accelerator grid and the decelerator grid are 10.46 m A and 18.24 m A,respectively.Performance test results indicate that the breakdown times increase obviously.The intercepted current of the accelerator grid and the decelerator grid increases to 13 m A and 16.5 m A,respectively,due to the change in the hot gap after 1.5 h operation.The numerical calculation results are well consistent with performance test results,and the error comes mainly from the test uncertainty of the hot gap.  相似文献   

4.
Ion thruster plumes from a multi-thruster array of different working configurations are simulated by a hybrid fluid-particle software. The particle in cell method is employed to model the transports of ions. The direct simulation Monte Carlo method is used to model momentum and charge exchange (CEX) collisions. The software is based on unstructured grids which make it easy to handle with complex geometry. The results of chamber simulation are compared with experimental data in ion current density and number density, which show good agreements. The maximum difference of current density along the thruster centerline is less than 9.30%. The interaction effects of plumes when multiple thrusters are operating in vacuum are predicted. Distributions of single charged xenon ions are significantly different in the near-field plume flow, however, merge into one in the far downstream region. Moreover, the interaction effect on the spatial distribution of CEX xenon ions is displayed as well.  相似文献   

5.
The ion source of the electron cyclotron resonance ion thruster(ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption(2 sccm,standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function(EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function(EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2×10~(16)m~(-3) to 10 eV/4×10~(16)m(-3) with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance.  相似文献   

6.
The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse. Presently, a complete prediction model that can predict the discharge pulse in the high-current stage does not exist. In this study, a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model. The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current, discharge current, voltage, and gas flow under actual working conditions. The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms. The pulse waveforms obtained using the model are found to be consistent with the experimental results. The model is used to evaluate the process of rapid changes in plasma density. Additionally, this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.  相似文献   

7.
The properties of an ordinary ion guide can be improved by inserting a grid between the nozzle and the skimmer. When positive ions are transported, an electric potential lower than +10 V is connected to the grid and one of the order of − 10 V to the skimmer. Efficient focusing is achieved between the nozzle and the grid by a combined action of the viscous helium flow field and the weak electric field. The focusing device is called a “squeezer”. It can be extended by adding more grids, a second skimmer, and differential pumping. Contrary to the first grid, the additional elements act more or less like electrostatic lenses in medium vacuum. With the squeezer ion guide, ions created in a helium chamber can be brought into high vacuum in less than 1 ms without accelerating them to kinetic energies higher than the order of 10 eV. The width of the kinetic energy distribution is typically 2.5−3.5 eV (FWHM). Consequently, problems caused by ion scattering are greatly reduced as compared to ordinary ion guides.

The squeezer ion guide was developed and tested with 215Po ions from a radioactive 227Ac source at JYFL as part of a quadrupole mass spectrometer. The ion currents were of the order of 100 ions/s. A typical yield through the first skimmer was 75% and through the second skimmer 65% of that through the nozzle. Later on a similar device was installed in the GARIS-IGISOL mass separator at RIKEN. It was tested with Ar and Xe ions froma gas discharge. Separated ion currents up to several nA were used. The mass resolution was improved by more than a factor of two. A squeezer ion guide tested at the JYFL IGISOL gave promising results in on-line experiments with fission products.  相似文献   


8.
In this paper,a direct connection between the discharge current amplitude and the thruster performance is established by varying solely the capacitance of the filter unit of the Hall thrusters.To be precise,the variation characteristics of ion current,propellant utilization efficiency,and divergence angle of plume at different low-frequency oscillation amplitudes are measured.The findings demonstrate that in the case of the propellant in the discharge channel just meets or falls below the full ionization condition,the increase of low-frequency oscillation amplitude can significantly enhance the ionization degree of the neutral gas in the channel and increase the thrust and anode efficiency of thruster.On the contrary,the increase in the amplitude of low-frequency oscillation will lead to increase the loss of plume divergence,therefore the thrust and anode efficiency of thruster decrease.  相似文献   

9.
In this study, the neutral gas distribution and steady-state discharge under different discharge channel lengths were studied via numerical simulations. The results show that the channel with a length of 22 mm has the advantage of comprehensive discharge performance. At this time, the magnetic field intensity at the anode surface is 10% of the peak magnetic field intensity. Further analysis shows that the high-gas-density zone moves outward due to the shortening of the channel length, which optimizes the matching between the gas flow field and the magnetic field, and thus increases the ionization rate. The outward movement of the main ionization zone also reduces the ion loss on the wall surface. Thus, the propellant utilization efficiency can reach a maximum of 96.8%. Moreover, the plasma potential in the main ionization zone will decrease with the shortening of the channel. The excessively short-channel will greatly reduce the voltage utilization efficiency. The thrust is reduced to a minimum of 46.1 mN. Meanwhile, because the anode surface is excessively close to the main ionization zone, the discharge reliability is also difficult to guarantee. It was proved that the performance of Hall thrusters can be optimized by shortening the discharge channel appropriately, and the specific design scheme of short-channel of HEP-1350PM was defined, which serves as a reference for the optimization design of Hall thruster with large height–radius ratio. The short-channel design also helps to reduce the thruster axial dimension, further consolidating the advantages of lightweight and large thrust-to-weight ratio of the Hall thruster with large height–radius ratio.  相似文献   

10.
A high-speed charge-coupled device camera was used to capture images of the plume and acceleration channel of a Hall effect thruster during ignition at different discharge voltages. To better understand the influence of changes in the discharge voltage on the plasma parameters during thruster ignition, a particle-in-cell numerical model was used to calculate the distribution characteristics of the ion density and electric potential at different ignition moments under different discharge voltages. The results show that when the discharge voltage is high, the ion densities in the plume and acceleration channel are significantly higher at the initial phase of thruster ignition; with the gradual strengthening of the ignition process, the propellant avalanche ionization during thruster ignition occurs earlier and the pulse current peak increases. The main reason for these phenomena is that the change in the discharge voltage results in different energy acquisitions of the emitted electrons entering the thruster channel.  相似文献   

11.
The distribution of the thermal effects of the ion thruster plume are essential for estimating the influence of the thruster plume, improving the layout of the spacecraft, and for the thermal shielding of critical sensitive components. In order to obtain the heat flow distribution in the plume of the LIPS-200 xenon ion thruster, an experimental study of the thermal effects of the plume has been conducted in this work, with a total heat flow sensor and a radiant heat flow sensor over an axial distance of 0.5–0.9 m and a thruster angle of 0°–60°. Combined with a Faraday probe and a retarding potential analyzer, the thermal accommodation coefficient of the sensor surface in the plume is available. The results of the experiment show that the xenon ion thruster plume heat flow is mainly concentrated within a range of 15°. The total and radial heat flow of the plume downstream of the thruster gradually decreases along the axial and radial directions, with the corresponding values of 11.78 kW m−2 and 0.3 kW m−2 for the axial 0.5 m position, respectively. At the same position, the radiation heat flow accounts for a very small part of the total heat flow, approximately 3%–5%. The thermal accommodation factor is 0.72–0.99 over the measured region. Furthermore, the PIC and DSMC methods based on the Maxwell thermal accommodation coefficient model (EX-PWS) show a maximum error of 28.6% between simulation and experiment for LIPS-200 ion thruster plume heat flow, which, on the one hand, provides an experimental basis for studying the interaction between the ion thruster and the spacecraft, and on the other hand provides optimization of the ion thruster plume simulation model.  相似文献   

12.
The performance of an iodine radio ion thruster with a 4 cm diameter(IRIT4) was studied experimentally in this paper. Regulation of the mass flow rates of the iodine propellant is achieved by using a temperature control method of the iodine reservoir. Performance of the thruster using iodine as propellants is obtained at different total thruster powers of 40.6–128.8 W,different grid voltages of 1000–1800 V and the iodine flow rate of 100 μgs~(-1). Results show that thrust and specific impulse increase approximately linearly with the increasing total thruster power and the screen grid voltage. The thrust of 2.32 mN and the specific impulse of 2361 s are obtained at the nominal total thruster power of 95.8 W and the screen grid voltage of 1800 V. It is also indicated that performance of the iodine propellant is comparable to that of the xenon propellant; and a difference between them is that the iodine thrust is slightly higher than xenon when the total thruster power is more than 62 W. At the nominal 95.8 W total thruster power, the thrust values of them are 2.32 m N and 2.15 mN respectively, and the thrust-to-power ratios of them are 24.2 mN kW~(-1) and 23.5 mN kW~(-1), respectively.  相似文献   

13.
An electron cyclotron resonance ion thruster must emit an electron current equivalent to its ion beam current to prevent the thruster system from being electrically charged.This operation is defined as neutralization.The factors which influence neutralization are categorized into the ion beam current parameters,the neutralizer input parameters,and the neutralizer position.To understand the mechanism of neutralization,an experiment and a calculation study on how these factors influence thruster neutralization are presented.The experiment results show that the minimum bias voltage of the neutralizer was-60 V at the ion beam current of 80 mA for the argon propellant,and a critical gas flow rate existed,below which the coupling voltage increased sharply.Based on the experiment,the neutralization was analyzed by means of a onedimensional calculation model.The computation results show that the coupling voltage was influenced by the beam divergence and the negative potential zone near the grids.  相似文献   

14.
In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion, a novel laser ablation pulsed plasma thruster is proposed, which separated the laser ablation and electromagnetic acceleration. Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster. The spectral lines at different times,positions and discharge intensities are experimentally recorded, and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines. With the discharge energy of 24 J, laser energy of 0.6 J and the use of aluminum propellant, the specific impulse and thrust efficiency reach 6808 s and 70.6%, respectively.  相似文献   

15.
A particle-in-cell Monte Carlo collision model of a discharge chamber is established to investigate the start-up process of a miniature ion thruster. We present the discharge characteristics at different stages (the initial stage, development stage, and stable stage) according to the trend of the discharge current with time. The discharge current is the sum of the sidewall current and the backplate current. During the start-up process, the sidewall current lags behind the backplate current. The variation and distribution characteristics of the discharge current over time are determined by the electron density distribution and electric potential distribution.  相似文献   

16.
Hall thrusters have been widely used in orbit correction and the station-keeping of geostationary satellites due to their high specific impulse,long life,and high reliability.During the operating life of a Hall thruster,high-energy ions will bombard the discharge channel and cause serious erosion.As time passes,this sputtering process will change the macroscopic surface morphology of the discharge channel,especially near the exit,thus affecting the performance of the thruster.Therefore,it is necessary to carry out research on the motion of the sputtering products and erosion process of the discharge wall.To better understand the moving characteristics of sputtering products,based on the hybrid particle-in-cell (PIC) numerical method,this paper simulates the different erosion states of the thruster discharge channel in different moments and analyzes the moving process of different particles,such as B atoms and B+ ions.In this paper,the main conclusion is that B atoms are mainly produced on both sides of the channel exit,and B+ ions are mainly produced in the middle of the channel exit.The ionization rate of B atoms is approximately 1%.  相似文献   

17.
Beam flatness is an important parameter that determines the performance and the lifetime of a gridded ion thruster.To improve the beam flatness of the 30 cm (LIPS-300) ion thruster,variable aperture ion optics that adapts to the decreasing ion density as the radius increases is proposed.It is the ion optics that the screen grid surface is divided into several zones,where the aperture diameter in each zone is determined by the ion density and the electron temperature upstream of the screen grid.The beam current density in the central area is artificially reduced.A particle in cell-Monte Carlo collision model is applied in this work to investigating the effect of variable aperture on the perveance and the maximum beam current per aperture by simulating the extraction,focusing and acceleration processes of ions.Taking into account the engineering implementability,the screen grid surface is divided into four zones.The hole diameter in each zone is decreased from 1.95 mm to 1.8 mm,1.9 mm,1.8 mm and 1.7 mm,respectively.The simulation results show that the maximum ion density in the center area of grid is decreased by 10.6% and 6.99%,while it is increased by 6.49% and 22.3% in the edge region,respectively.The beam flatness of the variable aperture ion optics is improved from 0.69 to 0.88.The erosion rate is decreased by 31.9%,but the total beam current is also decreased by 7.15%.The simulation results can provide a valuable reference of the development of the ion thruster.  相似文献   

18.
Non-intrusive characterization of the singly ionized xenon velocity in Hall thruster plume using laser induced fluorescence(LIF) is critical for constructing a complete picture of plume plasma,deeply understanding the ion dynamics in the plume, and providing validation data for numerical simulation. This work presents LIF measurements of singly ionized xenon axial velocity on a grid ranging from 100 to 300 mm in axial direction and from 0 to 50 mm in radial direction for a600 W Hall thruster operating at the nominal condition of discharge voltage 300 V and discharge current 2 A, the influence of discharge voltage is investigated as well. The ion velocity distribution function(IVDF) results in the far-field plume demonstrate a profile of bimodal IVDFs, especially prominent at radial distances greater than channel inner radius of 22 mm at axial position of 100 mm, which is quite different from that of the near-field plume where bimodal IVDFs occur in the central core region for the same power Hall thruster when compared to previous LIF measurements of BHT-600 by Hargus(2010 J. Propulsion Power 26 135).Beyond 100 mm, only single-peak IVDFs are measured. The two-dimensional ion velocity vector field indicates the bimodal axial IVDF is merely a geometry effect for the annular discharge channel in the far-field plume. Results about the IVDF, the most probable velocity and the accelerating potential profile along the centerline all indicate that ions are still accelerating at axial distances greater than 100 mm, and the maximum most probable velocity measured at300 mm downstream of the exit plane is about 19 km s-1. In addition, the most probable velocity of ions along radial direction changes a little except the lower velocity ion populations in the bimodal IVDF cases. The ion temperature at axial distances of 10 and 300 mm oscillates along the radial direction, while the ion temperature first increases, and then decreases for the 200 mm case. Finally, the axial position for the ion peak axial velocity on the thruster centerline is shifted upstream for higher discharge voltages, and the velocity curve is becoming steeper with the discharge voltage before reaching the maximum. This observation can be used as a criterion to optimize the thruster performance.  相似文献   

19.
The electrospray thruster is becoming popular in space propulsion due to its low power and high specific impulse.Before this work,an electrospray thruster based on a porous emitter was developed.In order to achieve larger and more stable thrust,the thruster was redesigned,and the influence of the space between strips on thrust was studied.Four types of emitter were tested,and they had 1,3,4 and 14 emitter-strips on the emission surface of the same size respectively.According to the experimental results,the maximum extraction voltage and emission current of the four thrusters are different under stable operational conditions.The measured stable emission currents and extraction voltages were-500μA/-5000 V,-1570 μA/-3800 V,-1200μA/-3800 V,and-650 μA/-4500 V,respectively.Increasing the number of strips may not result in the emission current increasing,but changing the stable operational range of the emission current per strip and the extraction voltage.The maximum stable operational extraction voltages of 3 and 4 emitter-strips are lower than those of 1 and 14 emitter-strips,but the emission currents are higher than those of 1 and 14 emitter-strips.Time-of-flight mass spectrometry was used to analyze the mass distribution and obtain the performance of the thruster in the case of thrusters with 1 and 3 emitter-strips.Both of their plumes were composed of very small ion cluster (the pure-ion regime),and their thrusts were 80.1 μN,219.2μN with specific impulses of 5774 s,5047 s,respectively.  相似文献   

20.
The radiofrequency(RF) inductive cathode has great prospects in space missions with long mission cycles, large speed increments, and rapid response requirements as the main electron source and neutralizer in Hall thrusters and ion thrusters. This paper proposes a comprehensive multi-physics RF inductive cathode model in which the RF electromagnetic field, electrostatic field for extracting electrons, flow field, plasma transport and electrochemical reaction process are all accounted for. Each ph...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号