首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 225 毫秒
1.
连续油管作业过程中经历复杂工况,现有研究方法大多仅考虑了单一工况,使得连续油管的疲劳寿命难以准确预测。为提高连续油管疲劳寿命预测的准确性,通过考虑连续油管作业在多工况条件下的特点,依据Manson-Coffin模型、Miner法则及中性层假设,建立含磨损、冲砂、疲劳损伤的连续油管疲劳寿命判断依据;开展连续油管疲劳性能试验,获得CT110连续油管的疲劳寿命模型关键参数;基于连续油管的使用档案,进行了某使用日历下连续油管疲劳寿命算例分析,形成多工况连续油管疲劳寿命预测方法。结果表明:在给定使用日历下,?50.8 mm×4.4 mm CT110连续油管的理论起下作业次数为11次,进行10次作业后连续油管极限载荷为645 MPa,与未使用时相比损失了17%;随着作业次数增多,连续油管寿命明显降低,其截面极限载荷呈下降趋势。本文所研究的多工况连续油管疲劳寿命预测方法为连续油管在实际使用过程中疲劳寿命预测及降级使用提供技术指导。  相似文献   

2.
板结点结构疲劳寿命模糊评判   总被引:1,自引:0,他引:1  
针对动态载荷作用,对板结点结构进行了有限元分析,得到容易产生疲劳破坏的结构危险点和应力幅值,根据疲劳和模糊的理论,用S-N曲线和模糊综合评判的方法对构件的疲劳寿命进行了估算,不但考虑了随机性对疲劳寿命的影响,而且考虑了模糊对疲劳寿命的影响,使板结点结构疲劳寿命预测结果更加接近实际,还给出了海洋钢结构中典型板结点在动态载荷作用下的疲劳寿命模糊评判。  相似文献   

3.
西气东输用焊接钢管疲劳可靠性寿命评估   总被引:1,自引:0,他引:1  
通过疲劳试验, 建立了西气东输用X70焊管焊接接头材料在 0 5、0 999、0 999 9和0 999 99等 4种可靠度下的疲劳寿命曲线, 即P S N曲线; 根据西气东输管道输气量不均匀系数,建立了X70焊接钢管所承受的载荷谱; 基于焊接接头材料可靠性疲劳寿命P S N曲线和管道载荷谱,采用Miner累积损伤准则, 估算了X70焊管的疲劳可靠性寿命。在 0 999、0 999 9和 0 999 99等 3种目标可靠度下, 西气东输用X70焊管的疲劳寿命均超过 30a, 在管道设计寿命内X70焊管不会发生疲劳破坏。  相似文献   

4.
含缺陷压力管道经缺陷评定合乎使用后,其疲劳寿命的估计具有重要的工程意义。将整个含缺陷压力管道作为一个整体,分析了含缺陷压力管道的疲劳裂纹扩展特点,提出了相应的含缺陷压力管道疲劳寿命的计算过程,并在基于可靠性评价的基础上,给出了核压力管道的可接受失效概率,最终得到了含缺陷核压力管道疲劳寿命预测方法。  相似文献   

5.
含缺陷油气管道剩余疲劳寿命的预测   总被引:5,自引:1,他引:4  
采用Paris公式计算分析了含轴向表面裂纹油气输送管的疲劳裂纹扩展过程 ,通过含缺陷油气输送管的全尺寸实物疲劳试验 ,对所采用的含缺陷管道疲劳寿命预测方法的计算结果做了实验验证 ,结果表明 ,含缺陷管道的疲劳寿命数值计算结果与实物试验结果基本吻合 ,采用Paris公式以及Zahoor等提出的管道表面裂纹尖端应力强度因子表达式进行油气输送管道的疲劳寿命计算分析是可行的。由分析和计算得知 ,含表面裂纹缺陷钢管疲劳加载周期为 1465次 ,考虑安全裕度 ,其剩余疲劳寿命约为 2 0a。含外表面裂纹疲劳扩展过程分为疲劳裂纹稳定扩展和疲劳裂纹快速失稳扩展两个阶段 ,前者的扩展周期较长 ,后者的扩展周期相对较短。  相似文献   

6.
为了发展在输气压力波动下高压输气管道疲劳寿命计算方法和探究影响疲劳寿命的动态载荷条件,利用ADINA有限元软件建立了高压输气管道与天然气相互作用的流固耦合模型,得到高压输气管道在输气压力波动下的动态响应,弯管在曲率最大处出现应力集中现象。流固耦合计算结果表明,管道应力主要取决于输气压力波动,气体流速对管道应力的影响可以忽略。利用MSC.Fatigue软件,将ADINA软件计算获得的疲劳载荷时间历程关系进行雨流计数处理,获得了载荷幅值和均值的频次直方图,采用全寿命法计算获得了对应载荷幅值和均值的线性累计损伤直方图,得到弯管疲劳寿命为1 240次,且疲劳破坏发生在弯管曲率最大处。提供的计算方法和结果可为高压输气管道的安全控制和设计提供参考。  相似文献   

7.
缺陷管道疲劳寿命预测新模型及试验验证   总被引:1,自引:0,他引:1  
传统的韧性控制单参数疲劳寿命预测方法不适用于高韧性管线钢的疲劳寿命预测。鉴 于此,根据Paris疲劳裂纹扩展速率公式da/dN=c(ΔK)n,基于失效评估图(FAD)技术,同时 考虑疲劳裂纹扩展对裂纹尖端应力强度因子和参考应力的影响,建立了对管道疲劳寿命进行预测 的新模型,并通过自行研制的一套用于油气输送管道全尺寸实物疲劳试验系统做了验证。结果表 明:新模型计算结果为试验结果的1/2左右,从疲劳寿命预测角度是完全可接受的,具有一定的 工程安全性。  相似文献   

8.
《石油机械》2020,(8):129-135
为有效预测含外表面裂纹管道的疲劳裂纹扩展寿命,基于扩展有限元方法,计算了不同管道半径厚度比、裂纹形状参数、裂纹相对深度下的管道外表面裂纹的应力强度因子。研究结果表明:管道外表面裂纹形状因子随裂纹相对深度的增加而增大,且随着裂纹形状参数的增大,其增加趋势更加显著;裂纹相对深度相同时,裂纹形状参数越大,裂纹形状因子越大;管道半径厚度比对管道外表面半椭圆裂纹形状因子的影响较小。在此基础上,建立了管道外表面裂纹应力强度因子的工程计算模型及基于Forman方程的含外表面裂纹管道的疲劳寿命预测模型。同时,开展了0Cr18Ni10Ti材料管道的三点弯曲疲劳试验,试验结果验证了所建含外表面裂纹管道疲劳寿命预测模型的有效性。该疲劳寿命预测模型可为管道结构工程设计提供参考。  相似文献   

9.
裂纹缺陷是制约海底油气管道正常运行的关键因素,裂纹会引起管道运行期间的泄漏、断裂,双裂纹共同作用对管道的破坏更为严重。该文研究了含双裂纹缺陷管道的疲劳寿命变化规律,计算了裂纹与管道轴线夹角的变化,双裂纹之间夹角和距离变化对管道疲劳寿命的影响,并对其进行敏感性分析。结果表明,双裂纹之间夹角和距离固定,疲劳寿命随着裂纹与管道轴线夹角的增加而降低,但是变化率逐渐增加;裂纹与管道轴线夹角固定,双裂纹之间夹角和距离变化时,疲劳寿命曲线会出现多个极值点,极小值多出现在夹角为90°时。分析结果可以为海洋工程的实际情况提供参考。  相似文献   

10.
弯曲疲劳寿命是影响连续油管使用范围最突出的问题之一,因此利用疲劳可靠性的理论预测其疲劳寿命是亟待解决的关键课题。预测连续油管疲劳寿命传统方法是将许多试样在不同应力水平的循环载荷作用下进行试验直至失效,从而作出S-N曲线,供工程参考,这样不仅费用高,且模拟实际应力条件也较困难。为此,根据低周疲劳曲线,通过引入复合随机变量X=NS2,对不同材料和应力水平下的连续油管疲劳实验数据进行了归一化处理。这是一种研究连续油管疲劳可靠性的新方法。  相似文献   

11.
韩军  高惠临  韩新利 《焊管》2011,34(12):27-31,35
受停输启用和供需变动的影响,油气管道的输送压力会发生周期性的变化,疲劳失效问题异常突出.特别是对于含有裂纹缺陷的管道,在疲劳载荷的作用下,若管道的应力强度因子幅超过疲劳裂纹扩展门槛值,裂纹就会发生疲劳扩展.当裂纹扩展到一定程度,超过管道运行压力下所能承受的临界缺陷极限尺寸,管道就会发生疲劳失效,从而影响到管道的使用寿命...  相似文献   

12.
文章针对X65钢级海洋管道,综合考虑焊接残余应力、应力集中、焊接初始缺陷、管道停输及内部介质压力波动等多因素影响,在国内首次开展了管道四点弯曲+内压联合的全尺寸疲劳试验研究。通过管道全尺寸疲劳性能试验,得到不同规格管道在不同应力幅下的疲劳循环次数,而后依据国际通用的标准规范BS 7608与DNV C203对全尺寸疲劳试验结果进行了量化的评定分析。该研究不仅有利于积累海洋管道全尺寸疲劳性能试验数据,且可为评价海洋管道后续的全尺寸疲劳试验寿命及服役期间的安全运行周期提供定量依据。  相似文献   

13.
Fatigue is defined as a fracture phenomenon due to a repetitive load or a variable dynamic load that occurs at a lower load than the ultimate static load. Fatigue stability of an asphalt mixture is its ability of enduring the repetitive flexural loads. In this study, the carbon nanotubes are used as the bitumen modifier in the way that the prepared samples contain 0%, 0.3%, 0.6%, 0.9%, 1.2%, and 1.5% carbon nanotubes. Then, the classic and rheological experiments are conducted on these samples. This additive improves the classical properties of bitumen (softening point, penetration degree, and so on) and also the fatigue parameter of bitumen (i.e., G*Sinδ) in comparison to the standard bitumen. Using the rheological graphs, it can be predicted that adding the carbon nanotubes to bitumen might improve the fatigue life of the asphalt mixtures. To evaluate the accuracy of this prediction, the fatigue experiment are performed on the prepared beam samples using a four-point loading in the case of constant strain (600 microstrain) with a semi-sinusoidal wave at 20°C. The end of the samples’ fatigue life is 50% reduction in their initial rigidity. It is observed that with an increase in the percentage of carbon nanotube in fatigue samples, the fatigue life of asphalt mixtures remarkably increases.  相似文献   

14.
输气管道运行过程中,输气量的变化会导致管道承受一定的波动压力,造成管道发生疲劳损伤,从而威胁管道的安全。通常在管材疲劳寿命测试和分析中尚未考虑置信度和安全概率的要求,不能完全满足管道可靠性评估的需要。为此,通过对管道焊缝材料进行疲劳实验,采用单边容限分析方法,同时考虑安全概率和置信度要求,建立了不同安全概率下西气东输二线X80钢管焊缝的疲劳寿命曲线;根据管道输气量不均匀系数,建立了管道的应力谱;在此基础上利用损伤累计原理评估了西气东输二线管道焊缝疲劳可靠性寿命。计算结果表明,在设计寿命周期内,西气东输二线管道不会发生疲劳破坏。该方法可以为管道疲劳寿命分析和可靠性评估提供依据,具有一定的工程应用价值。  相似文献   

15.
基于Palmgren-Miner疲劳损伤累加理论,提出了一种与动力水龙头工作实际相符的疲劳寿命有限元分析方法。在考虑应力集中、零件尺寸、表面条件、腐蚀状态及载荷变化影响的基础上,确定了满足FEM 1.001规范的材料S-N曲线计算和修正方法。以提环为研究对象,采用该方法进行疲劳寿命有限元模拟。结果表明,提环疲劳寿命值高于动力水龙头服役周期工作总次数,提环疲劳寿命满足设计要求。  相似文献   

16.
徐进  石兆东  张康 《海洋石油》2009,29(3):80-84
海底管道在服役期间由于各种原因会在某些管段形成悬跨。这些悬跨在海流力作用下,将产生涡激振动。这种涡激振动最终可能导致管道疲劳失效。管道在海流力作用下发生的涡激振动是管道振动和漩涡尾流振动耦合的结果。在建立管道振动模型和Matteoluca尾流振子模型基础上,对管道涡激振动动力响应特性进行分析。依据Miner线性损伤累积理论,采用S-N曲线法分析计算管道疲劳寿命。最后,针对海洋油气开发与生产,提出延长海底管道疲劳寿命的方法和措施。  相似文献   

17.
在隔水管钻井作业中,利用有限个加速度传感器监测数据预测钻井隔水管疲劳寿命是钻井隔水管系统面临的一项技术挑战.介绍了一种基于传递函数法,监测位置A处加速度数据,评估目标位置B处钻井隔水管疲劳损伤及疲劳寿命的分析方法.利用南海某深水气井钻井隔水管336 h加速度的监测数据,进行隔水管的疲劳损伤评估,得到了疲劳寿命.提出的基...  相似文献   

18.
连续管在作业过程中,复杂的周期性载荷作用、腐蚀、机械损伤、制造缺陷和人为误操作等都会导致连续管寿命的缩短。为此,基于Qt平台、疲劳寿命理论和国内外大量经验数据开发出了连续管疲劳寿命预测软件。通过该软件计算分析了连续管弯曲半径、壁厚和内压等对其疲劳寿命的影响,并进行了可行性验证。分析结果表明:该软件能够有效地计算出连续管疲劳寿命值;连续管内部压力的增大使其疲劳寿命的缩短由快速到缓慢,当内压增大到一定值时,连续管基本失去承载能力;选择合适的滚筒尺寸可以延长连续管的使用寿命;建议选用壁厚较大或者变壁厚的连续管。该软件的开发对连续管在工程中的应用和安全评估具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号