首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
天然气水合物藏和天然气藏开采规律对比分析   总被引:1,自引:1,他引:0  
以考虑了气-水-水合物-冰相多相渗流过程、水合物分解动力学过程、水合物相变过程、冰-水相变过程、热传导、热对流等因素的天然气水合物藏降压开采模型为基础,对水合物藏和天然气藏的产气速度、产水速度、累计产气量及地层压力等参数的变化规律进行了对比分析。气藏的产气速度高于水合物藏,但气藏的产气期要短;随着初始压力的增加,气藏的产气速度增加而水合物藏的产气速度降低;水合物藏的产水速度高于气藏,且水合物藏最大产水速度随着初始压力的升高而降低;在一定的初始压力范围内,水合物藏的累计产气量高于气藏,且水合物藏和气藏累计产气量的差别随着初始压力的增加而逐渐缩小,但当初始压力达到某值时,气藏的累计产气量将超过水合物藏。  相似文献   

2.
为了弄清楚降压幅度和饱和度对于天然气水合物(以下简称水合物)分解过程的影响规律这一事关水合物工业开采的核心问题,基于我国南海北部神狐海域沉积物粒径特征配置出多孔介质样品,在实验室模拟试采区现场钻孔压力、温度、盐度、饱和度条件,开展了松散沉积物中两种饱和度范围(Sh,Ⅰ=23%~26%,以下简称体系Ⅰ;Sh,Ⅱ=46%~50%,以下简称体系Ⅱ)和4种降压幅度(12 MPa、9 MPa、6 MPa、3 MPa)条件下水合物降压分解实验。研究结果表明:①降压幅度为12 MPa条件下产气集中于分解前期,分解前期产气量随饱和度增大占产气总量比例升高;②分解时间(开发期)随降压幅度的增大呈线性减小趋势,降压幅度增加9 MPa,体系Ⅰ与体系Ⅱ的分解时间分别缩短为原来的28.39%和44.97%;③高饱和度体系水合物瞬时产气速率波动较为剧烈,其在降压幅度12 MPa条件下瞬时产气速率峰值、阶段产气速率峰值为最大,降压开采效果较好。结论认为:①所做实验和南海试采结果均表明,产气速率峰值在降压开采前期出现,可能引发储层和井筒失稳,需在水合物降压开采进一步试验和现场工程中加强关注;②后续研究需借助较大尺度水合物降压开采模拟装置,明确尺寸效应对水合物降压开采产气规律的影响。  相似文献   

3.
为了提高南海北部低渗透率、泥质粉砂型天然气水合物(以下简称水合物)储层降压开采的气产量和采收率,基于我国2017年水合物试采W17站位水合物层含有少量游离气且下伏泥层的条件,根据实际试采数据,针对单垂直井和垂直井网两种布井方式,利用TOUGH+HYDRATE软件进行了水合物层降压开采数值模拟,研究了开采井产气/产水特征及开采区温度场、压力场、水合物饱和度场的变化特征,进而分析了渗透率、井间干扰对压力场、温度场及流场变化的影响机制。研究结果表明:①低渗透率泥质粉砂型水合物层在降压开采过程中,水合物的分解使水合物沉积层渗透率增大,从而使气、水产量增加;②在降压开采初始阶段,开采井的气、水产量短时达到峰值后急剧减小,水合物迅速分解、吸热及游离气的涌入使得井筒附近温度降低,而后随着开采时间的延续,气、水渗流阻力增加,压降传播速率降低,水合物分解气产量和井口气产量不断降低,水产量则缓慢上升;③水合物的分解由压降和周边流体渗流、传热联合控制,井筒附近及水合物层上下界面处的水合物优先分解,井口产出的天然气有较大部分来自于周边水合物层中的游离气和孔隙水溶解气;④采用垂直井网进行水合物开采,每口井的控制面积减少,单井的产气/产水速率及累计产气/产水量均明显低于单垂直井,但垂直井网开采总的气产量更大、水合物采收率更高;⑤井距决定了每口井的控制面积和最终累计产气量,井间压降叠加效应加速了水合物的分解,井间区域的压力及温度显著低于单井,但井间对称流场的干扰会阻碍气液流动,在井间中心区域将形成“静止区”。结论认为,多井联合开采可以提高井场总的气产量,但需要根据钻井成本、水合物层渗透率、预计生产周期、井场总气产量和水合物采收率等指标来综合确定合理井距。  相似文献   

4.
南海北部神狐海域天然气水合物(以下简称水合物)藏第二次试采结果表明,水平井降压开采水合物藏比直井具有更大的潜力,但对于究竟该采用多长水平段才能达到良好的开发效果目前尚不明确。为此,自行设计了一套开采模拟实验装置,首先采用物理实验手段研究了水平井长度对水合物藏降压开发气水生产动态、温度压力变化规律的影响,进而利用TOUGH+HYDRATE软件建立了等尺度数值模拟模型,在历史拟合的基础上分析了水合物饱和度和含气饱和度的变化规律。研究结果表明:(1)对于水和水合物共存的水合物藏,高压可动水在降压初期大量产出,同时地层压力快速下降,水合物大量分解,在降压开发后期由于没有稳定的热源供给,产气量呈现初期快速上升到达峰值后震荡式下降的趋势;(2)水平井可以有效增大泄水和泄气面积,因而水平井长度越长,产气量峰值和累计产气量越高且产气量峰值到达时间越短,但在无热源供应的情况下,产气量递减速度也越快;(3)水平井附近会形成明显的低水合物饱和度区,长水平井段有利于扩大水合物的分解区域,但水合物藏在降压开发后期仍然残存大量未分解水合物,需改变开发方式进一步促进水合物分解;(4)由于盖层传热和气水重力差的影响,降压开发容易形成次生气顶,因而水平井位置靠近水合物藏上部有利于降低分解气的超覆,进而提高分解气产量和开发效果。  相似文献   

5.
天然气水合物藏注热开采敏感参数分析   总被引:1,自引:0,他引:1  
天然气水合物作为一种潜在的未来能源,其开采已经成为天然气工业新的研究热点。基于水合物藏热力开采的机理,建立了数学模型并编制了软件,对影响水合物藏注热开采效果的参数进行了敏感性分析。结果表明,分解前缘移动速度和累积产气量主要受孔隙度、注热温度、初始水合物饱和度、水合物藏初始温度、分解区导热系数和热扩散系数的影响,而未分解区的热力学参数对注热开采影响不大,该研究对今后水合物藏的注热开采具有一定的指导意义。  相似文献   

6.
考虑气-水-水合物-冰的多相渗流过程、水合物分解动力学过程、水合物相变过程、冰-水相变过程,及其对渗透率的影响、热传导、热对流等,建立了天然气水合物藏降压分解模型.在此基础上,考虑冰存在的条件下,分析了绝对渗透率模型、相对渗透率模型及饱和度处理方法对水合物分解的影响.发现采用Civan绝对渗透率模型计算的产气速度低于同指数条件下Masuda模型的产气速度;在Civan模型条件下,采用第一、二种饱和度处理方法对计算结果影响不大,而采用第三种饱和度处理方法对计算结果具有较大影响;在Masuda模型条件下,三种饱和度处理方法对结果都会产生较大影响.提出了新的描述多孔介质中水合物分解的比面估算模型,该模型既能描述水舍物以孔隙表面形式分解,也能描述水合物以粒子-粒子形式分解.结果表明,水合物以孔隙表面形式分解的速度要快于以粒子-粒子形式分解的速度.  相似文献   

7.
目的在不同类型的分解促进剂作用下多级降压开采天然气水合物,研究水合物分解的力学性质对储层稳定性的影响。 方法采用不同有效围压、不同分解促进剂及其不同含量、焖井时间等多因素,通过多级降压分解,水合物沉积物储层岩石力学稳定性性能影响效果评价和规律分析。 结果随着降压分解,水合物饱和度降低,抗剪强度和弹性模量逐渐降低,甲烷水合物沉积物呈脆性破坏。 结论分解剂含量越大,对水合物的力学影响越大;注入含量越大,焖井时间越长,水合物强度越低,分解剂对水合物强度减弱的效果越明显;醇类分解剂(乙二醇)比盐类分解剂(CaCl2)开采水合物更容易减弱水合物试样的强度,降低储层稳定性。   相似文献   

8.
天然气水合物注热开采数学模型   总被引:6,自引:2,他引:4  
根据热力学第一定律及天然气水合物分解机理,在合理假设基础上,建立了包括物质守恒方程、能量守恒方程、分解动力学方程及辅助方程的天然气水合物注热开采数学模型。对数学模型进行差分处理得到差分方程组,采用隐式求解压力、显式求解饱和度(IMPES)的方法,考虑天然气水合物分解的压力、温度平衡条件,对模型进行求解,据此编制了数值模拟器。数值模拟器很好地拟合了注热开采实验的产气速率和温度分布,验证了数学模型的有效性。数值模拟及注热开采实验分析表明,天然气水合物注热开采可分为自由气释放、水合物分解及边界效应3个阶段,水合物分解存在分解前缘,注入端一侧水合物大部分已经分解,出口端一侧水合物分解较少,饱和度较高。图5表1参11  相似文献   

9.
热力法开采天然气水合物的数学模拟   总被引:4,自引:0,他引:4  
将天然气水合物在热力作用下的分解过程看作一个移动界面问题,即热力开采过程中整个水合物藏可分为分解区和水合物区。通过适当简化,建立了分解区和水合物区的传热模型,并严格推导了模型的解析解。使用模型分别模拟注入蒸气和热水条件下开采天然气水合物的两个实例,得到分解区和水合物区温度场随时间变化的规律。在此基础上,分析了水合物热力开采过程中热量的有效利用率,即用于水合物分解的热量与输入的总热量的比值。模型计算结果表明,在相同条件下,注入热水比注入蒸气将能获得更高的热量有效利用率。在给定的条件下,注入蒸气和热水开采过程的热量的有效利用率分别为0.349和0.465。另一个方面,该比值与水合物地层的物性参数(如水合物的饱和度、分解区域的热传导系数等)有很大的关系,地层水合物饱和度越高,分解区的热传导系数越小,则热量的有效利用率越高。  相似文献   

10.
为了弄清楚降压幅度和饱和度对于天然气水合物(以下简称水合物)分解过程的影响规律这一事关水合物工业开采的核心问题,基于我国南海北部神狐海域沉积物粒径特征配置出多孔介质样品,在实验室模拟试采区现场钻孔压力、温度、盐度、饱和度条件,开展了松散沉积物中两种饱和度范围(S_(h,Ⅰ)=23%~26%,以下简称体系Ⅰ;S_(h,Ⅱ)=46%~50%,以下简称体系Ⅱ)和4种降压幅度(12 MPa、9 MPa、6 MPa、3 MPa)条件下水合物降压分解实验。研究结果表明:①降压幅度为12 MPa条件下产气集中于分解前期,分解前期产气量随饱和度增大占产气总量比例升高;②分解时间(开发期)随降压幅度的增大呈线性减小趋势,降压幅度增加9 MPa,体系Ⅰ与体系Ⅱ的分解时间分别缩短为原来的28.39%和44.97%;③高饱和度体系水合物瞬时产气速率波动较为剧烈,其在降压幅度12 MPa条件下瞬时产气速率峰值、阶段产气速率峰值为最大,降压开采效果较好。结论认为:①所做实验和南海试采结果均表明,产气速率峰值在降压开采前期出现,可能引发储层和井筒失稳,需在水合物降压开采进一步试验和现场工程中加强关注;②后续研究需借助较大尺度水合物降压开采模拟装置,明确尺寸效应对水合物降压开采产气规律的影响。  相似文献   

11.
由于天然气水合物只能在低温高压环境下保持稳定,导致以原状天然气水合物岩石样品进行岩石岩电测试较为困难,用阿尔奇公式计算的饱和度误差会比较大。为了提高天然气水合物饱和度的计算精度,建立了反映天然气水合物储层结构特征的逾渗网络模型。根据Kirchhoff连续性方程和各节点、线的电导率,通过Cholesky分解算法计算网络模型中的电流参数。通过数值模拟研究了水合物饱和度、地层水矿化度和黏土矿物含量对天然气水合物储层数字岩心的影响,并根据模拟结果建立了修正的阿尔奇公式。模拟结果表明,数字岩心的电阻率随水合物饱和度的增加呈指数增长。随着地层水电导率的增大,天然气水合物数字岩心的电阻率呈线性减小。随着黏土矿物含量增加,岩心电阻率呈负指数下降趋势,当孔隙度、黏土矿物含量较低时,天然气水合物饱和度对数字岩心电阻率的影响较大。利用修正前后的Archie公式,对南海神狐地区W18井的测井资料进行了水合物饱和度估算。修正前的计算结果相对误差为33.2%,修正后为22.5%,说明修正后的饱和度公式精度有明显提高。  相似文献   

12.
���ɵز��е���Ȼ��ˮ�������ѧģ��   总被引:6,自引:1,他引:5  
目前从天然气水合物中开采天然气的方法,主要有热激发法、化学试剂法和减压法。文章通过适当简化,从理论上推导出减压法开采天然气的数值模型和水合物分解前缘边界曲面离井筒距离表达式,并对推导出的偏微分方程经过线性简化和自相似原理,推导出多孔介质水合物地层中压力和温度的分布方程和天然气产量方程。通过实例,研究了多孔介质水合物地层中压力和温度的分布规律,即离井筒越近,压力和温度越小。进行了影响水合物分解前缘边界曲面离井筒距离各影响因素的敏感性分析,得到了减小井筒压力和增大地层温度可以使离井筒越远地方的水合物层分解释放出天然气,天然气的产量随着开采时间的增大而逐渐减小但最终趋于一稳定值的结论。  相似文献   

13.
文章基于多相流原理,建立了气水两相流试井积分模型。总结了气水两相流的试井曲线规律,分析了压力导数曲线变化的原因。理论分析表明气井即使未见水,气藏气水或油水多相流过渡区内流度的变化可能导致压力导数曲线上翘,然后变平的现象,同时,气水接触前缘是随时间变化的。试井过程中,随着开井时间的增大,气体的降压膨胀,压力波扩散到气水边界以后,水体起到阻止气体移动的作用,导致压力导数曲线上翘。对于出水气井,由于气水总流度随含水饱和度的增大而下降,试井压力导数曲线将发生上翘,导数曲线的上翘斜率与总流度随饱和度下降速度有关。因此不能用单相定压外边界试井模型解释产水气井试井资料。最后分析了1口气井两次试井资料,该井不同阶段试井过程中用多相流动方法确定了气水推进前缘,发现水线逐渐向井移动。  相似文献   

14.
储层渗透率是影响水合物降压与注热联合法分解的重要因素。建立了包含守恒方程、反应动力学方程和辅助方程的三维水合物联合法分解模型,重点研究了不同储层初始渗透率条件下联合法解离过程,考察了压力、水合物分解及气、水饱和度变化特性。结果表明:储层渗透率越大,压力传播速度越快,储层压力水平越低;流体流动阻碍越小,注入热量热损失越小,反应时间越短;液相相对渗透率越大,液相流动性越强。但储层渗透率对气体饱和度变化影响不大。  相似文献   

15.
天然气水合物(以下简称水合物)藏对地质条件的变化较为敏感,微弱波动即可造成水合物藏被破坏。为研究水合物藏在温度突变下的分解过程,在水合物三维成藏物模实验系统(装置主体为32 MPa高压反应釜,反应釜内部由5个温度传感器和30个电阻率探测电极构成空间点阵)中合成了100 L的人工水合物矿体,测定了水合物矿体在外界温度升高到295 K后其内部温度、电阻率的变化情况,并以此为基础分析了水合物薇在温度发生突变以后的演化行为。实验结果表明:①人工水合物矿体在环境温度升高后会迅速分解(经过600 h才生成并达到稳定的矿体仅需38 h即可完全分解),通过监测实验过程中介质温度和电阻率变化,可以对分解过程中的分解量、分解速度进行考察;②分解过程中,电阻率变化受水合物饱和度、孔隙水盐度以及地层位置的影响,其中,水合物饱和度较高的区域发生少量分解时,由于孔隙水被稀释会导致电阻率上升;③对于海底水合物藏,当发生持续、显著的温度变化后,其气体组分、赋存方式等均会发生明显改变。  相似文献   

16.
目前有关天然气水合物(以下简称水合物)的研究主要集中在物理化学性质考察和开采(分解)方法探索方面。在进行后者的研究过程中,地层渗流过程的物理模拟至关重要,但目前借助于石油开采研究中广泛应用的填砂管等多孔介质对水合物进行动态过程的研究却鲜有报道。为此,利用河砂填砂管在岩心驱替装置上进行了甲烷水合物生成过程的物理模拟,考察了地层温度、甲烷压力及地层模型性质参数等对水合物生成过程的影响。结果表明:(1)利用冰融水作为地层模型的束缚水可显著提升甲烷水合物的生成速率;(2)多孔介质条件下过程驱动力(即实验压力或温度偏离水合物相平衡对应值的程度)对甲烷水合物的生成起着决定性作用;(3)当甲烷压力高于水合物相平衡压力1.4倍以上,或者实验温度低于相平衡温度3℃以下时,甲烷水合物生成诱导期几乎不随温压条件的变化而变化;(4)渗透率、含水饱和度、润湿性等参数对实验中甲烷水合物的生成率不构成明显影响。  相似文献   

17.
天然气水合物的沉淀/分解作用是一种放热/吸热反应,海底天然气渗漏是从高温区向低温区运移而且携带热量,这2种热量(水合物生成热和渗漏天然气热容热)会导致海底温度场的变化并影响水合物的形成。以美国墨西哥湾布什山水合物丘为例,应用渗漏天然气形成水合物的动力学模型,探讨了水合物生成热和渗漏天然气热容热对水合物稳定性的影响:在布什山,水合物天然气渗漏量为1.8 kg/(m2·a)和10%的渗漏天然气沉淀为水合物条件下,10 ka内水合物生成热和渗漏天然气热容热使海底表层的地温梯度增加了3℃/km,在1 km深处的沉积层地温梯度则降低了1.4℃/km左右,温度最大的扰动发生于400 m左右深的沉积层里(增加了0.4℃),这样的温度场变化使水合物稳定带厚度减少了12 m,使0.06 kg/m 2的水合物分解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号