首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Oil shales and coals occur in Cenozoic rift basins in central and northern Thailand. Thermally immature outcrops of these rocks may constitute analogues for source rocks which have generated oil in several of these rift basins. A total of 56 oil shale and coal samples were collected from eight different basins and analysed in detail in this study. The samples were analysed for their content of total organic carbon (TOC) and elemental composition. Source rock quality was determined by Rock‐Eval pyrolysis. Reflected light microscopy was used to analyse the organic matter (maceral) composition of the rocks, and the thermal maturity was determined by vitrinite reflectance (VR) measurements. In addition to the 56 samples, VR measurements were carried out in three wells from two oil‐producing basins and VR gradients were constructed. Rock‐Eval screening data from one of the wells is also presented. The oil shales were deposited in freshwater (to brackish) lakes with a high preservation potential (TOC contents up to 44.18 wt%). They contain abundant lamalginite and principally algal‐derived fluorescing amorphous organic matter followed by liptodetrinite and telalginite (Botryococcus‐type). Huminite may be present in subordinate amounts. The coals are completely dominated by huminite and were formed in freshwater mires. VR values from 0.38 to 0.47%Ro show that the exposed coals are thermally immature. VR values from the associated oil shales are suppressed by 0.11 to 0.28%Ro. The oil shales have H/C ratios >1.43, and Hydrogen Index (HI) values are generally >400 mg HC/g TOC and may reach 704 mg HC/ gTOC. In general, the coals have H/C ratios between about 0.80 and 0.90, and the HI values vary considerably from approximately 50 to 300 mg HC/gTOC. The HImax of the coals, which represent the true source rock potential, range from ~160 to 310 mg HC/g TOC indicating a potential for oil/gas and oil generation. The steep VR curves from the oil‐producing basins reflect high geothermal gradients of ~62°C/km and ~92°C/km. The depth to the top oil window for the oil shales at a VR of ~0.70%Ro is determined to be between ~1100 m and 1800 m depending on the geothermal gradient. The kerogen composition of the oil shales and the high geothermal gradients result in narrow oil windows, possibly spanning only ~300 to 400 m in the warmest basins. The effective oil window of the coals is estimated to start from ~0.82 to 0.98%Ro and burial depths of ~1300 to 1400 m (~92°C/km) and ~2100 to 2300 m (~62°C/km) are necessary for efficient oil expulsion to occur.  相似文献   

2.
The petroleum system in the Barents Sea is complex with numerous source rocks and multiple uplift events resulting in the remigration and mixing of petroleum. In order to investigate the degree of mixing, 50 oil and condensate samples from 30 wells in the SW Barents Sea were geochemically analysed by GC‐FID and GC‐MS to evaluate their thermal maturity and secondary alteration signatures. Saturated and aromatic compounds from C14–C18 and biomarker range (C20+) hydrocarbons were compared with light (C4‐C8) hydrocarbon alteration and maturity signatures from a previous study. The geochemical data demonstrate that petroleum generation occurred from the early‐ to late‐oil/condensate window, correlating to calculated vitrinite reflection values of between 0.7%Rc and 1.9%Rc. Two maturation traits are in general present in the oil samples analysed and indicate mixing of petroleum phases: a C20+ fraction which represents a possible “black‐oil ‐related” signature; and a C20‐ fraction, which is probably a more recent oil charge. However, maturity variations are less pronounced in condensates, which in general exhibit higher generation temperatures than oils but are influenced by severe phase fractionation effects. The samples are characterised by diverse biodegradation signatures including depletion of C15‐ saturated compounds, almost complete removal of n‐alkanes, elevated Pr/n‐C17 values, high 17α(H), 25‐norhopane content, and a reverse trend in methylated naphthalene distribution. However, the presence of the more recent, unaltered light hydrocarbon charge together with the oil with a palaeo‐biodegraded signature is clear evidence that mixing has occurred. A cross‐plot of C24‐tetracyclic terpane/C30αβ‐hopane versus C23‐C29‐tricyclic terpane/C30αβ‐hopane can be used to discriminate between Palaeozoic/Triassic and Jurassic‐generated petroleums in the Barents Sea region, since it appears to be maturity independent.  相似文献   

3.
The Fang Basin is one of a series of Cenozoic rift‐related structures in northern Thailand. The Fang oilfield includes a number of structures including the Mae Soon anticline on which well FA‐MS‐48‐73 was drilled, encountering oil‐filled sandstone reservoirs at several levels. Cuttings samples were collected from the well between depths of 532 and 1146 m and were analysed for their content of total organic carbon (TOC, wt%), total carbon (TC, wt%) and total sulphur (TS, wt%); the petroleum generation potential was determined by Rock‐Eval pyrolysis. Organic petrography was performed in order to determine qualitatively the organic composition of selected samples, and the thermal maturity of the rocks was established by vitrinite reflectance (VR) measurements in oil immersion. The TOC content ranges from 0.75 to 2.22 wt% with an average of 1.43 wt%. The TS content is variable with values ranging from 0.12 to 0.63 wt%. Rock‐Eval derived S1 and S2 yields range from 0.01–0.20 mg HC/g rock and 1.41–9.51 mg HC/g rock, respectively. The HI values range from 140 to 428 mg HC/g TOC, but the majority of the samples have HI values >200 mg HC/g TOC and about one‐third of the samples have HI values above 300 mg HC/g TOC. The drilled section thus possesses a fair to good potential for mixed oil/gas and oil generation. On an HI/Tmax diagram, the organic matter is classified as Type II and III kerogen. The organic matter consists mainly of telalginite (Botryococcus‐type), lamalginite, fluorescing amorphous organic matter (AOM) and liptodetrinite which combined with various TS‐plots suggest deposition in a freshwater lacustrine environment with mild oxidising conditions. Tmax values range from 419 to 436°C, averaging 429°C, and VR values range from ~0.38 to 0.66% R0, indicating that the drilled source rocks are thermally immature with respect to petroleum generation. The encountered oils were thus generated by more deeply buried source rocks.  相似文献   

4.
南海北部新生代盆地构造迁移及其对烃源岩的制约作用   总被引:4,自引:1,他引:4  
南海处于欧亚、太平洋、印-澳三大板块的交汇处,是在太平洋板块俯冲和印度板块与欧亚板块碰撞共同作用下经过扩张形成的。南海北部自西向东依次分布着北部湾盆地、莺歌海盆地、琼东南盆地、珠江口盆地、台西南盆地、台西盆地等多个新生代被动陆缘盆地,这些盆地虽然同样都经历了大致相当的从裂陷到拗陷的构造演化史,但在张裂活动过程中存在着明显的构造迁移现象,构造沉降特征分析显示:在西半部的北部湾盆地、莺歌海盆地、琼东南盆地3个盆地中,构造活动自北而南迁移;在东半部的珠江口盆地、台西南盆地、台西盆地3个盆地中,自西向东有构造事件发生时间逐步变晚的趋势。这种迁移现象对烃源岩的形成、分布及生烃特征等方面有明显的控制作用,表现为:西半部的莺歌海盆地、琼东南盆地比北部湾盆地沉降幅度大,烃源岩发育规模也较大,具有更大的生烃潜力和更好的油气勘探前景;在东半部珠江口盆地、台西南盆地、台西盆地中,自西向东有烃源岩发育层位偏上、发育规模逐渐减小、埋藏深度逐渐减小的趋势,所以台西南盆地、台西盆地油气前景不如珠江口盆地。  相似文献   

5.
塔里木盆地新生代构造演化与油气聚集   总被引:15,自引:1,他引:15  
塔里木盆地是长期演化发展的复合前陆盆地,新生代经历了早第三纪构造宁静期、中新世构造重要发展和上新世-早更新世构造形成期。构造变形以印度板块与欧亚板块的碰撞及持续挤压推移为背景,以褶皱-冲断发育及快速构造沉降为特征,新生代构造运动加速烃源岩热演化,形成大量断相关褶皱,改变了油气运聚条件,形成大量油气藏。  相似文献   

6.
This study reviews the stratigraphy and the poorly documented petroleum geology of the Belize‐Guatemala area in northern Central America. Guatemala is divided by the east‐west trending La Libertad arch into the North and South Petén Basins. The arch is the westward continuation of the Maya Mountains fault block in central Belize which separates the Corozal Basin in northern Belize from the Belize Basin to the south. Numerous petroleum seeps have been reported in both of these basins. Small‐scale oil production takes place in the Corozal Basin and the North and South Petén Basins. For this study, samples of crude oil, seepage oil and potential source rocks were collected from both countries and were investigated by organic geochemical analyses and microscopy. The oil samples consisted of non‐biodegraded crude oils and slightly to severely biodegraded seepage oils, both of which were generated from source rocks with similar thermal maturities. The crude oils were generated from marine carbonate source rocks and could be divided into three groups: Group 1 oils come from the North Petén Basin (Guatemala) and the western part of the Corozal Basin (Belize), and have a typical carbonate‐sourced geochemical composition. The oils correlate with extracts of organic‐rich limestones assigned to the Upper Cretaceous “Xan horizon” in the Xan oilfield in the North Petén Basin. The oils were generated from a single source facies in the North Petén Basin, but were charged from two different sub‐basins. Group 2 oils comprise crudes from the South Petén Basin. They have characteristics typical of carbonate‐sourced oils, but these characteristics are less pronounced than those of Group 1 oils. A mixed marine/lacustrine source facies deposited under strongly reducing conditions in a local kitchen area is inferred. Group 3 oils come from the Corozal Basin, Belize. A carbonate but also a more “shaly” source rock composition for these oils is inferred. A severely biodegraded seepage oil from Belmopan, the capital of Belize, resembles a nearby crude oil. The eastern sub‐basin in the North Petén Basin may potentially be the kitchen area for these oils, and for the seepage oils found in the western part of the Corozal Basin. The seepage oils from the Corozal and Belize Basins are moderately to severely biodegraded and were generated from carbonate source rocks. Some of the seepage oils have identical C27–29 sterane distributions to the Group 2 oils, but “biodegradation insensitive” biomarker ratios show that the seepage oils can be divided into separate sub‐groups. Severely and slightly biodegraded seepage oils in the Belize Basin were probably almost identical prior to biodegradation. Lower Cretaceous limestones from the Belize Basin have petroleum generation potential, but the samples are immature. The kitchen for the seepage oils in the Belize Basin remains unknown.  相似文献   

7.
原油中烷基萘的形成机理及其成熟度参数应用   总被引:4,自引:3,他引:1       下载免费PDF全文
原油和沉积有机质中烷基萘系列主要通过异构化反应和歧化反应生成,并可用芳香烃的亲电取代反应历程进行解释,所生成各种异构体的相对含量受“电子效应”和“空间效应”的控制。多甲基萘系列地球化学参数,对于原油及沉积有机质的成熟度、生物降解作用和生源组成具有表征意义。渤海湾盆地大民屯凹陷原油样品中的多甲基取代萘系列分析结果表明,在常规的甾萜类异构化作用达到平衡终点的情况下,多甲基萘取代系列地球化学参数仍能反映出大民屯凹陷高蜡油成熟度比正常油偏低,并与该区的石油地质背景和盆地模拟结果相吻合,表明多甲基萘系列相关的地球化学参数是一类非常有用的地球化学指标。  相似文献   

8.
塔里木盆地塔河油田原油中双金刚烷分布特征与油气运移   总被引:2,自引:0,他引:2  
研究了塔里木盆地塔河油田原油中双金刚烷的分布特征,探讨了该油田油气的充注期次和运移方向,结果表明,原油中双金刚烷指标值反映了原油的成熟度,并且指示研究区4区和6区原油充注时间较早、9区原油充注时间较晚,其它油区原油充注时间介于上述二者之间;原油中双金刚烷指标值分布特征显示出塔河油田下奥陶统油气存在2个充注方向,一是由南向北,并且油气成熟度相对较低,可能主要代表了早期的油气运移,另一个是由东向西,原油成熟度相对较高,可能主要代表了晚期的油气运移。根据原油成熟度和运移方向特征,认为塔河油田的早期油气起源于满加尔坳陷,晚期油气起源于满加尔坳陷和草湖坳陷,主力烃源岩层为寒武-奥陶系。  相似文献   

9.
珠江口盆地白云凹陷烃源岩热史及成熟史模拟   总被引:3,自引:1,他引:2       下载免费PDF全文
珠江口盆地白云凹陷文昌组和恩平组陆相烃源岩热史及成熟史研究对白云凹陷深水油气勘探具有指导意义。在恢复白云凹陷地史和热史的基础上,利用EASY%Ro模型计算了白云凹陷西凹、主凹和东凹文昌组和恩平组两套烃源岩的成熟度史,并分别对比文昌组和恩平组烃源岩在白云凹陷西凹、主凹和东凹成熟度演化特征。研究结果表明:1)自始新世早期起白云凹陷热流值持续上升,在距今约44Ma时达到最大值大约为77mW/m2,现今热流值为60mW/m2左右。2)白云凹陷西凹、主凹和东凹文昌组烃源岩开始生烃(Ro=0.5%)时间分别为距今43,44,35Ma,达到生烃高峰(Ro=1.0%)时间分别为距今30,35,17Ma,达到高成熟(Ro=1.3%)时间分别为距今25,33,13Ma;而恩平组烃源岩开始生烃时间分别为距今20,30,22Ma,达到生烃高峰时间分别为距今10,22,8Ma,达到高成熟时间分别为距今8,17,0Ma。3)白云凹陷主凹烃源岩生烃时间最早,主生油期时间短,热演化程度最高;东凹烃源岩生烃时间最晚,主生油期时间长,热演化程度最低。  相似文献   

10.
This study presents a systematic geochemical analysis of Paleogene crude oils and source rocks from the Raoyang Sag in the Jizhong sub-basin of the Bohai Bay Basin (NE China). The geochemical characteristics of fifty-three oil samples from wells in four sub-sags were analysed using gas chromatography (GC) and gas chromatography – mass spectrometry (GC-MS). Twenty core samples of mudstones from Members 1 and 3 of the Eocene-Oligocene Shahejie Formation were investigated for total organic carbon (TOC) content and by Rock-Eval pyrolysis and GC-MS to study their geochemistry and hydrocarbon generation potential. The oils were tentatively correlated to the source rocks. The results show that three groups of crude oils can be identified. Group I oils are characterized by high values of the gammacerane index and low values of the ratios of Pr/Ph, Ts/Tm, 20S/(20S+20R) C29 steranes, ββ/(ββ+αα) C29 steranes, C27 diasteranes/ C27 regular steranes and C27/C29 steranes. These oils have the lowest maturity and are interpreted to have originated from a source rock containing mixed organic matter deposited in an anoxic saline lacustrine environment. The biomarker parameter values of Group III oils are the opposite to those in Group I, and are interpreted to indicate a highly mature, terrigenous organic matter input into source rocks which were deposited in suboxic to anoxic freshwater lacustrine conditions. The parameter values of Group II oils are between those of the oils in Groups I and III, and are interpreted to indicate that the oils were generated from mixed organic matter in source rocks deposited in an anoxic brackish–saline or saline lacustrine environment. The results of the source rock analyses show that samples from Member 1 of the Shahejie Formation were deposited in an anoxic, brackish – saline or saline lacustrine environment with mixed organic matter input and are of low maturity. Source rocks in Member 3 of the Shahejie Formation were deposited in a suboxic to anoxic, brackish – saline or freshwater lacustrine environment with a terrigenous organic matter input and are of higher maturity. Correlation between rock samples and crude oils indicates that Group I oils were probably derived from Member 1 source rocks, while Group III oils were more likely generated by Member 3 source rocks. The Group II oils with transitional characteristics are likely to have a mixed source from both sets of source rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号