首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
使用 Span80-OP7、Span80-OP10、Span80-OP15乳化体系制备了以柴油为连续相的丙烯酰胺反相微乳液,确定形成微乳的最佳 HLB 值为7.0。通过电导率法与目测法相结合绘制出体系的拟三元相图,表明以Span80-OP10作为复合乳化剂形成的反相微乳区面积较大,油相与乳化剂的最佳质量比为3:1。同时发现,在体系中添加质量分数为2%的乙酸钠可以提高丙烯酰胺单体溶液的增溶量,此时体系组成(质量分数)为:水相39.52%,油相45.36%,乳化剂相15.12%。  相似文献   

2.
含瓜尔胶的反相乳液稳定性的研究   总被引:1,自引:0,他引:1  
以液体石蜡为油相,质量分数为2.5%的瓜尔胶水溶液为水相,Span80/OP-10为复配乳化剂,十六醇为助稳定剂,制备了稳定的反相乳液。考察了Span80/OP-10复配乳化剂的亲水-亲油平衡(HLB)值及其含量、反相乳液中水相含量、十六醇含量及搅拌转速对乳液类型及其稳定性的影响;并使用显微镜及粒度分析仪对乳液的结构进行了表征。实验结果表明,反相乳液的最佳制备条件为:Span80/OP-10复配乳化剂的HLB值和质量分数分别为7.36和10%(基于油相的总质量),十六醇质量分数3.75%(基于油相的总质量),水相的体积分数33%,搅拌转速为2 100 r/min。反相乳液中的胶束为球形且呈分散状,平均粒径小于10μm且分布较窄。  相似文献   

3.
在室温下,以月桂酸为乳化剂,十二醇为助溶剂,制备不同质量比的甲醇-柴油微乳液,考察乳化剂及助溶剂对微乳液密度和运动黏度的影响。结果表明,室温下,月桂酸对该体系的增溶效果最好。助溶剂十二醇能提高甲醇-柴油微乳液的稳定性。当m(月桂酸)∶m(十二醇)=9∶1时,复合乳化剂的乳化效果最好,甲醇含量不超过35%时,甲醇-柴油微乳液在25℃下稳定保存;随着甲醇含量增大,微乳液的运动黏度和密度降低,但在考察范围内均符合国家标准。  相似文献   

4.
柴油微乳液的配制   总被引:2,自引:1,他引:1  
 利用非离子型表面活性剂复配制备W/O柴油微乳液,并以油、水、表面活性剂+助表面活性剂为三组分绘制了相图。从微乳液相区面积的变化考察了不同表面活性剂的复配、不同的助表面活性剂及助表面活性剂与表面活性剂质量比(m(C)/m(T))对柴油微乳液形成的影响。并用不同浓度的NaOH溶液代替水相,考察了碱液对柴油微乳液形成的影响。得到的最佳的柴油微乳液配制的条件为:表面活性剂复配质量比(m(T80)/m(S80))为0.667,m(C)/m(T)为0.3,助表面活性剂为正丁醇,NaOH溶液质量分数为0.2 %。利用HLB值理论和界面膜理论对实验结果进行了初步分析。  相似文献   

5.
《精细石油化工》2015,(6):14-18
以表面活性剂、高碳醇及甲酯类物质复配作为助溶剂,以甲醇-直馏汽油、芳烃-甲醇-直馏汽油为原料醇汽油,通过考察不同亲水亲油值(HLB值)助溶剂使体系不分层的加入量得到最佳助溶效果情况下的HLB值,以及适宜HLB值下助溶剂对甲醇汽油相分离温度的影响,得到了一种清洁高效的甲醇汽油助溶剂复配方案。绘制了该复配方案抗水相稳定性实验的三元相图,探讨了其相稳定作用与溶解度参数的关系。结果表明:通过HLB值可以大致评价甲醇汽油的助溶效果,但其仅适用于同一复配体系;复配表面活性剂的HLB为2时,甲醇与汽油具有最佳的互溶性;随着脂肪酸甲酯加入量的增多,相分离温度下降,说明脂肪酸甲酯在一定程度上可以增强甲醇与汽油的互溶性;最佳复配方案为添加剂总量为2%,E(脂肪酸甲酯)、C(SAA-I+油酸)、D(正辛醇+正十二醇)分别占添加剂总量6.3%,8.5%,85.2%时,M30甲醇汽油相分离温度达-19℃;溶解度参数对甲醇与汽油互溶性效果无必然关系,但具有一定的参考价值。  相似文献   

6.
以58^#全精炼蜡为原料制备乳化蜡,考察了乳化剂的种类及其亲水亲油平衡值(HLB)、乳化温度、乳化时间、乳化水用量等工艺条件对乳化蜡稳定性的影响。结果表明,乳化剂可选用SP-80/TW-80或SP-60/TW-802种复配乳化剂;当选用SP-60/TW-80复配乳化剂时,在乳化温度为65~90℃、乳化时间为30~60min、乳化剂的HLB值为8—12、乳化水用量为70%~75%的条件下,可得到稳定的乳化蜡乳液。  相似文献   

7.
文章研究了水基加工液基础体系中乳化剂加量与HLB值对形成微乳液的影响。结果表明:在复合乳化剂加量不变的情况下,HLB值较小时,浓缩液呈现为透亮液体,随着HLB值的增大,浓缩液的黏度变大,逐渐发生稠化呈凝胶状或膏状;对于稀释液而言,HLB值较大或较小时均无法形成微乳液,在中间合适的HLB值区间内,稀释液可形成透明或半透明的微乳液体系。乳化剂加量下降,浓缩液开始发生稠化的HLB值下移,形成微乳液的区间也出现下移,并且其区间宽度逐渐变窄。当乳化剂加量低至某个临界点时,无法再形成均一透明的微乳液。  相似文献   

8.
拟用作聚合物水基凝胶延缓交联剂的多重乳液按下述方法制备:1.5%醋酸铬水溶液与加入3%油包水乳化剂的柴油按体积比70∶30混合,制成W1/O乳液,后者与加有1%水包油乳化剂的矿化度32 g/L的模拟地层水按体积比70∶30混合,制成(W1/O)/W2多重乳液。用电导率法测定乳液静置30天析出水相中醋酸铬含量并计算乳液破裂率,结果表明多重乳液的稳定性远小于相应的W1/O乳液,使用油包水乳化剂T161(HLB值3.8)和水包油乳化剂Tween20(16.7)的多重乳液的稳定性好于使用Span80(4.3)和Tween20的多重乳液,30℃、50℃、70℃破裂率分别为11.5%,17.8%,28.0%和21.0%,56.0%,67.3%。加入T161的柴油与模拟地层水之间的界面剪切粘度ηs大于加入Span80时的相应值,表面活性剂加量0.3%时,30℃,50℃,70℃下60 minηs值(mN.s/m)分别为0.112,0.100,0.096和0.0442,0.0349,0.0257。在水相中加入0.02%和0.10%Tween20使加入3.0%T161的柴油与模拟地层水之间30℃、60 minηs值降低14.3%和27.3%,油包水乳化剂为Span80时则降低34.9%和65.4%。用T161/Tween20制备的多重乳液稳定性较好的原因,是油水界面的T161分子不易被Tween20分子顶替。图9表3参9。  相似文献   

9.
以Span-20、Tween-20为石蜡复配乳化剂,采用反相乳化(EIP)法,复合乳化剂HLB值为10.5、浓度为8%,选择HMHEC/锂皂石为助乳化剂,制得稳定的水包油纳米石蜡乳液。所得纳米石蜡乳液滴为负电性,平均粒径在96~126 nm之间,具有好的长期稳定性,乳液粒径在5个月内无显著变化,奥氏熟化作用较弱,无机盐对其长期稳定性无影响。  相似文献   

10.
以柴油为分散介质、Span和Tween复配体系为乳化剂、质量分数为62.O%的丙烯酰胺水溶液为分散相,配制了反相微乳液。通过增溶水相实验、绘制拟三元相图、测定电导率,确定了反相微乳液的组成(质量分数):柴油43%,Span80/Tween80(质量比3:1)复配乳化剂17.4%,62.0%的丙烯酰胺水溶液39.6%。以产物中聚丙烯酰胺实测含量为指标,考察了引发温度、引发剂用量、搅拌速度和反应时间对聚合反应的影响,并对丙烯酰胺反相微乳液聚合的实验条件进行优化。电镜照片显示,在较优条件下制得的聚丙烯酰胺微球粒径在50illa左右,且分布单一。  相似文献   

11.
利用HLB值法筛选稠油乳化降黏体系   总被引:1,自引:0,他引:1  
在油水比为7∶3的情况下,利用HLB值法确定出了大庆稠油乳化的最佳HLB值为8.82,并根据此法确定出了表面活性剂AOS的HLB值为15。对于大庆稠油,根据其形成乳状液的最佳HLB值及不同表面活性剂的HLB值,通过计算得到了该稠油的乳化降黏体系配方为m(AEO3)∶m(AES)=11.5∶1。在油水质量比为7∶3,降黏剂用量0.7%条件下,对大庆稠油的降黏率达77.8%,90min沉降脱水率大于83.3%。  相似文献   

12.
丙烯酰胺-丙烯酸钠共聚物絮凝剂的合成及性能研究   总被引:18,自引:9,他引:9  
采用反相乳液聚合法,合成丙烯酰胺-丙烯酸钠共聚物絮凝剂,共聚单体丙烯酰胺与丙烯酸投料的摩尔比为1∶1,考察了单体浓度、引发剂浓度、乳化剂用量、亲水亲油平衡值(HLB值)、油水体积比及乙二胺四乙酸二钠用量对共聚物特性粘数([η])的影响。实验结果表明,在单体用量为52g/mL(以每毫升水中单体的克数计)、油水体积比为1.5时,体系最稳定;氧化剂的浓度为3.3mmol/L时,共聚物特性粘数最大;在HLB值为5.30、乳化剂质量浓度为4.5g/mL时,絮凝效果最好;乙二胺四乙酸二钠用量(占单体的质量)的最佳值为0.24%,共聚物特性粘数达到最大。  相似文献   

13.
本文用显微镜分别考察了3种不同表面活性剂对液膜状态的影响,用激光粒度仪分析了表面活性剂对乳状液颗粒大小及分布的影响,用pH酸度计测定W/O/W多重乳状液膜体系外水相的pH值。结果表明:3种不同的表面活性剂(失水山梨糖醇酐单油酸酯span80、双烯基丁二酰亚胺T153、多烯基丁二酰亚胺T152)在膜溶剂含量为50 mL、载体含量2%、液体石蜡含量2%、内相NaOH浓度为0.5 mol/L及乳水比为1∶6条件下制得W/O/W型多重乳状液膜。span80所形成乳状液膜外水相pH值最大,膜破损严重;而T153所形成的乳状液膜外相pH值相对较小,乳状液膜较稳定。3种不同表面活性剂所形成的W/O乳状液在水分散相中平均粒径大小顺序为:T153(60.369μm)>T152(58.510μm)>span80(37.630μm),且T153形成乳状液的粒度分布最集中。乳水比为1∶5、初始硫离子含量为40 mg/L时,由T153所形成乳状液对硫离子的脱除率最高,达98%。  相似文献   

14.
任亚青  吴本芳 《油田化学》2020,37(2):318-324
针对超稠油黏度高、流动性差和地层水矿化度高等现状,以表面活性剂、碱、有机磷酸为原料制得乳化降黏剂,对降黏剂配方进行了优选,研究了矿化度和温度对降黏剂降黏性能的影响,并分析了降黏机理。结果表明,超稠油乳化降黏剂最优配方为:质量比为1∶1的磺酸盐类阴离子表面活性剂YBH与醇醚羧酸盐类的阴、非离子表面活性剂YFBH复配的主剂、碱助剂、耐盐助剂NYZJ-1的质量比为1.1∶0.45∶1.15。在主剂、助剂总加剂量为0.81%(占原油乳状液的质量分数)、乳化温度80℃、油水质量比为7∶3、矿化度为95 g/L的条件下,可使超稠油黏度由316.5 Pa·s(50℃)降至其乳状液的0.0831 Pa·s,降黏率达99.97%,50℃下静置4 h的出水率为5.93%。温度对乳化降黏剂降黏性能的影响较小,经200℃处理2 h后超稠油乳状液的降黏率不变。复配乳化剂各组分间发挥了协同增效作用,增强了体系的降黏性能,提高了乳状液的稳定性。乳化降黏剂降黏效果良好,耐温抗盐,适用于高温高盐油藏。图10表3参15。  相似文献   

15.
低气液比泡沫驱的室内物理模拟研究   总被引:1,自引:0,他引:1  
考虑常规泡沫驱注入气体的费用比较高,制备了由双子型表面活性剂9BS-5-0、甜菜碱及NaOH组成低气液比泡沫驱油体系.通过实验测定阻力因子、阻力系数评价了泡沫封堵能力,泡沫所产生的阻力系数与质量分数为0.15%的聚丙烯酰胺相当.评价了不同气液比(0.05:1~2:1)时低气液比泡沫驱的效果,在表面活性剂中混入少量气体后...  相似文献   

16.
Abstract

In order to investigate the effect of different nonionic surfactants on hydrate formation in oil-water emulsion systems, the hydrate formation experiments were carried out in a diesel water-in-oil emulsion system with a water cut of 40% using nonionic surfactants such as Span80, Tween80, Span20 and Tween20, respectively. The results show that under the experimental conditions of 275?K and 7?MPa, a certain concentration of nonionic surfactant can promote the growth of hydrates in diesel emulsion systems, shorten the hydration reaction time, and have a significant effect on the improvement of gas storage density. The combination of Span80 and Tween80 in a mass ratio of 1:1 was the most effective in promoting the formation of hydrate in the emulsion system. When the mass fraction was 0.5%, the hydration reaction time was the shortest and the hydrate gas storage density was the highest. Due to the addition of the nonionic surfactant, a stable interfacial film and interfacial charge are formed around the water droplets of the emulsion system, making it difficult for the droplets to approach and polymerize, which maintains the stability of the water-in-oil emulsion system and has great reference value for the study of hydrate storage and transportation.  相似文献   

17.
助表面活性剂醇对柴油微乳液的影响   总被引:2,自引:2,他引:0  
采用几种不同碳链长度的醇为助表面活性剂、油酸单乙醇胺盐为表面活性剂,制备了柴油微乳液。考察了醇与表面活性剂的质量比(ζas)和醇的种类对微乳化作用的影响,对不同碳链长度的醇制备的柴油微乳液粒径进行表征,计算得到了醇由连续相(c)转移到界面层(i)的标准自由能变化(ΔG■c㈠→i)。实验结果表明,只有碳原子数大于3的中长链醇才能形成柴油微乳液;随醇碳链长度的增加,柴油微乳液的最大增溶水量、界面层中醇的含量及柴油微乳液平均粒径均减小;ΔG■㈠c→i与醇碳原子数具有很好的线性关系;制备柴油微乳液较佳的助表面活性剂为正辛醇,ζas值约为0.6。  相似文献   

18.
反相乳液聚合法制备驱油用高分子表面活性剂   总被引:1,自引:1,他引:0  
采用反相乳液聚合法,以(NH4)2S2O8-NaHSO3为氧化-还原引发剂,Span80/OP-10为复合乳化剂,十二胺为助乳化剂,将一种阴离子型表面活性单体MS(一种分子中具有耐水解的N-烷基丙烯酰胺结构的磺酸盐型单体)、N,N-二异辛烷基丙烯酰胺疏水单体(DiC8AM)与丙烯酰胺(AM)共聚制得AM-MS-DiC8AM(简称PMD)共聚物。实验结果表明,制备PMD共聚物的较佳条件为:反应温度40℃;反应时间5h;n((NH4)2S2O8)∶n(NaHSO3)=1∶1,w(引发剂)=0.10%(基于总单体);控制Span80/OP-10复合乳化剂的亲水亲油值在5~6之间;AM,MS,DiC8AM的用量(基于聚合体系的质量)分别为23.6%,6.0%,0.4%。在较佳条件下制备的PMD共聚物水溶液具有较高的表面活性、表观黏度和抗盐能力(黏度保留率为62.2%)。  相似文献   

19.
The interfacial tension between paraffin wax and water, as well as oxidized paraffin wax and water has been studied and the results showed that the interfacial tension between oxidized paraffin wax and water decreased obviously after paraffin wax was oxidized to proper degree. Meanwhile the pseudo-ternary phase diagram of the oxidized paraffin wax/surfactants/water system has been determined. It was confirmed that using a single surfactant A or cosurfactant B couldn't prepare oxidized paraffin wax microemulsion and the cosurfactant A/surfactant B mass ratio km has a proper range and an optimized value to produce the oxidized paraffin wax microemulsion, moreover, the microemulsion particle distribution was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号