首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
耐温抗盐AM/AA/AMPS/DMDAAC共聚物的合成及评价   总被引:1,自引:0,他引:1  
针对高温和高矿化度油田,以丙烯酰胺(AM)、丙烯酸(AA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)为原料,合成了AM/AA/AMPS/DMDAAC共聚物,确定了最佳合成条件:反应时间6 h,单体总质量分数10%,AMPS含量10%,反应温度35 ℃,反应体系为弱碱性.对此共聚物性能进行了评价,结果表明,此共聚物具有优良的耐温抗盐性能,并具有很好的抗老化能力.  相似文献   

2.
《石油化工》2016,45(1):91
以十六烷基二甲基叔胺和氯丙烯为原料合成了十六烷基二甲基烯丙基氯化铵(C_(16)-DMAAC),接着以丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和C_(16)-DMAAC为共聚单体,通过反相乳液聚合得到疏水缔合共聚物P(AM/C_(16)-DMAAC/AMPS)。利用IR和~1H NMR方法分析了共聚物的结构,考察了C_(16)-DMAAC用量对乳液聚合的影响,研究了聚合物溶液的黏度行为及其影响因素。表征结果显示,制备P(AM/C_(16)-DMAAC/AMPS)时,C_(16)-DMAA C适宜的用量为10%(w)(基于反应单体的质量);P(AM/C_(16)-DMAAC/AMPS)中含长链疏水单体和两性离子结构,分子间的疏水缔合作用表现出较好的增黏效应,具有明显的抗盐性能;在温度较高时,含表面活性剂的P(AM/C_(16)-DMAAC/AMPS)溶液显示优异的温增黏效应。  相似文献   

3.
以丙烯酰胺(AM)、丙烯酸(AA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和1-烯丙氧基-4-壬基苯(NPAB)为单体,采用过硫酸铵-亚硫酸氢钠为引发体系,制备了一种新型水溶性共聚物,并对该共聚物进行了红外和扫描电镜表征。适宜的共聚条件为:m(AM)∶m(AA)∶m(AMPS)∶m(NPAB)=6∶4∶0.3∶0.02、pH=7、w(引发剂)=0.29%、单体总浓度20%、温度40℃。研究表明:2g/L的共聚物溶液表观黏度高达716.3mPa·s;在120℃时,共聚物溶液黏度保留率达到35.71%;MgCl2和CaCl2含量为2g/L时,共聚物溶液黏度保留率高达125.3和126.3mPa·s。该共聚物溶液可提高模拟原油的采收率。  相似文献   

4.
《精细石油化工》2014,(1):19-24
以丙烯酰胺(AM)、丙烯酸(AA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和1-烯丙氧基-4-壬基苯(NPAB)为单体,采用过硫酸铵-亚硫酸氢钠为引发体系,制备了一种新型水溶性共聚物,并对该共聚物进行了红外和扫描电镜表征。适宜的共聚条件为:m(AM)∶m(AA)∶m(AMPS)∶m(NPAB)=6∶4∶0.3∶0.02、pH=7、w(引发剂)=0.29%、单体总浓度20%、温度40℃。研究表明:2g/L的共聚物溶液表观黏度高达716.3mPa·s;在120℃时,共聚物溶液黏度保留率达到35.71%;MgCl2和CaCl2含量为2g/L时,共聚物溶液黏度保留率高达125.3和126.3mPa·s。该共聚物溶液可提高模拟原油的采收率。  相似文献   

5.
实验以全氟辛基乙基丙烯酸十二氟庚酯为疏水单体,与丙烯酰胺(AM)、二烯丙基二甲基氯化铵(DM-DAAC)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)通过自由基胶束共聚法制成氟碳型絮凝剂。结果表明,在n(AM):n(AMPS):n(DMDAAC)=4:2:4,PFMA质量分数0.5%、总单体质量分数30%、引发剂用量0.3%时,合成的四元共聚物对硅藻土悬浮液有较好的絮凝效果。当共聚物添加量15 mg/L、温度为50℃、pH=3时,硅藻土悬浮液的透光率和絮凝时间分别为98.8%和14 s。  相似文献   

6.
耐温抗盐驱油共聚物的合成   总被引:12,自引:2,他引:10  
用胶束聚合方法,将丙烯酰胺(AM)与疏水单体N-正辛基丙烯酰胺(C_8AM)、极性阴离子单体2-丙烯酰胺基-2-甲基丙磺酸(AMPS)进行共聚,合成了AM-C_8AM-AMPS疏水性缔合三元共聚物作为驱油剂,命名为KYP。研究了十二烷基硫酸钠的质量分数、引发温度、单体的摩尔分数、尿素的浓度对聚合物溶液(ρ=1 mg/L)在总矿化度为6.5 g/L的模拟盐水中表观粘度的影响。结果表明:C_8AM和AMPS的摩尔分数分别为0.7%和20%、引发温度为11℃、尿素的浓度为0.2 mmol/L时,合成的KYP具有很好的增粘效果。  相似文献   

7.
传统的聚合物驱油剂难以满足耐温耐盐和长期老化热稳定性的要求。以N-苯乙基-N-十二烷基甲基丙烯酰胺(PEDMAM)为疏水单体、2-甲基-2-丙烯酰胺基丙磺酸(AMPS)为功能单体,与丙烯酰胺(AM)共聚制备了水溶性疏水缔合聚合物PSA,考察了最优单体(AM、AMPS、PEDMAM)质量比为83∶15∶2时共聚物的综合性能。结果表明,与传统的部分水解聚丙烯酰胺(HPAM)相比,三元共聚物PSA具有良好的增黏性能、耐温耐盐性、抗剪切性、老化稳定性及驱油性能。在85℃和32 g/L矿化度(钙镁质量浓度800 mg/L)条件下,1500 mg/L PSA溶液的黏度为16.3 mPa·s;在85℃无氧条件下老化60 d后的黏度保留率80%。室内岩心驱替实验表明,0.7 PV1500 mg/L PSA可在水驱基础上提高采收率35.05%,比相近黏度的HPAM(3000 mg/L)高12.35百分点,具有明显的驱油优势。图8表3参19  相似文献   

8.
采用水溶液聚合后水解法,以丙烯酰胺(AM)、(4-丙烯酰胺基)苯基十四烷基二甲基溴化铵(PTDAB)、2-丙烯酰胺基-2甲基丙磺酸(AMPS)为原料合成了疏水缔合聚合物P(AM/PTDAB/AMPS/NaAA),通过考察反应条件对合成聚合物的特性黏数、溶解性以及增黏性的影响规律确定了最佳合成条件,研究了最佳合成条件下所合成聚合物的耐温抗盐性、剪切稳定性以及热稳定性。聚合物的最佳合成条件为:PTDAB加量为总单体质量的0.5%~0.8%,AMPS加量为总单体质量的15%,总单体质量分数为25%,复合引发剂加量为总单体质量的0.1%,pH值为8,引发温度30℃。采用矿化度100 g/L的盐水配制的质量浓度2000 mg/L的合成聚合物溶液的黏度仍大于30 mPa·s;采用矿化度20 g/L的盐水配制质量浓度2000 mg/L的合成聚合物溶液在转速5000 r/min下剪切3 min再静置4 h后的黏度保留率可达80%以上;聚合物溶液在85℃高温老化150 d后的黏度大于20 mPa·s。所合成四元共聚物表现出优异的耐温抗盐性、剪切稳定性以及热稳定性,性能优于高相对分子质量抗盐聚丙烯酰胺P(AM-AMPS-NaAA)。  相似文献   

9.
采用水溶液聚合法,选用(NH4)2S2O8-NaHSO3为氧化-还原引发体系,以乙二胺四乙酸二钠、尿素为助剂,进行了丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸(AM/AMPS)共聚物合成的逐级放大实验,考察了共聚反应的放大效应及其对共聚物溶液表观黏度的影响。实验结果表明,从0.2 L小试放大到5 L模试时存在一定的放大效应,所得共聚物溶液的表观黏度降低约3.0 mPa.s,从5 L模试放大至50 L模试和1 m3中试时放大效应不明显;在95℃、矿化度为10 000 mg/L的模拟油藏盐水中,AM/AMPS共聚物具有优异的增黏性、耐温抗盐性和抗Ca2+性能,明显优于进口产品;在95℃、45 d的老化性能测试中,AM/AMPS共聚物溶液具有较高的黏度保留率,达到122.5%。  相似文献   

10.
离子型疏水缔合共聚物的分子复合   总被引:1,自引:0,他引:1  
 通过丙烯酰胺(AM)/丁基苯乙烯(BST)/2-丙烯酰胺基-2-甲基丙磺酸钠(NaAMPS)阴离子共聚物(PASA)与丙烯酰胺(AM)/ BST/二甲基二烯丙基氯化铵(DMDAAC)阳离子共聚物(PBAD)的分子复合,得到复合型疏水缔合聚合物驱油剂PASA/PBAD。溶液表观黏度测试和AFM结果表明,反电荷的静电相互吸引作用能加强疏水基团的分子间缔合作用,形成流体力学体积巨大的缔合结构,使得当PBAD/ PASA复合聚合物中PBAD质量分数分别为15%和90%时,其质量浓度为2 g/l的水溶液和NaCl溶液(NaCl浓度为1.026 mol / l)的表观黏度分别为3561和227 mPa.s,远高于相同质量浓度PBAD和PASA单组分的水和NaCl溶液的表观黏度。在NaCl浓度更高 (1.710 mol/l)时,PASA/PBAD 的NaCl溶液的表观黏度仍能达到201 mPa.s,显示了其良好的抗盐性。复合聚合物溶液的耐温和抗剪切性能也得到了明显的提高。  相似文献   

11.
采用反应挤出技术制备了尼龙66/弹性体/玻璃纤维三元复合材料。对三元复合材料的冲击强度、熔体流动速率、吸水率等性能进行了测试,并对其微观形貌作了表征。结果表明:在加工过程中,弹性体发生了接枝反应,生成了马来酸酐(MAH)-g-弹性体反应型增容剂,该增容剂进一步与尼龙66和玻璃纤维发生化学反应,强化了三元复合材料的界面作用。当弹性体乙烯-1-辛烯共聚物(POE)、三元乙丙橡胶(EPDM)或乙烯-乙酸乙烯酯(EVA)的加入量为15份(质量)时,相应三元复合材料的缺口冲击强度分别为尼龙66的5.8,6.7,4.7倍;拉伸强度分别为109.32,99.30,85.46 MPa。  相似文献   

12.
针对实验合成的衣康酸/N-羟甲基丙烯酰胺/甲基丙烯磺酸钠(IA/N-MAM/SMAS)三元共聚物阻垢剂,分别考察了水样的pH值、温度、钙离子质量浓度对共聚物阻垢性能的影响,对比了合成的共聚物阻垢剂与商业化的水处理剂分散水中氧化铁的性能,并对阻垢实验中生成垢样的表观形貌进行SEM分析。研究结果表明:合成的三元共聚物阻垢剂适用于具有高温、高矿化度的弱碱性工业循环冷却水,阻垢剂中引入的磺酸基和酰胺基官能团增加了其分散氧化铁的性能,改变了碳酸钙垢晶体的形态和结构,抑制了垢的生长。  相似文献   

13.
防垢剂AM/AA/MA三元共聚物的合成及性能研究   总被引:16,自引:3,他引:13  
以水为溶剂,K2S2O8-NaHSO3为引发剂,合成AM/AA/MA(丙烯酰胺/丙烯酸/顺酐)共聚物,其最佳反应条件:单体配比70:30、反应温度60℃、反应时间4h、引发剂的用量0.5%,当水中Ca2+浓度为200×10-6,投放量为10×10-6,防垢率可达90%以上,通过红外光谱差热及热失重分析测定了共聚物结构和性能。  相似文献   

14.
丙烯/1-丁烯共聚物的研究进展   总被引:1,自引:0,他引:1  
介绍了丙烯/1-丁烯共聚物的性质及特点,综述了丙烯/1-丁烯共聚物的国内外研究进展,介绍了丙烯/1-丁烯共聚物的制备工艺。  相似文献   

15.
采用氧化还原体系,以十六烷基二甲基烯丙基氯化铵(C16DMAAC)、丙烯酸钠(NaAA)、丙烯酰胺(AM)为原料,合成了AM/NaAA/C16DMAAC共聚物。考察了合成条件对共聚物特性粘数和单体转化率的影响,确定了最佳合成条件:引发剂加量0.3%-0.5%,其中n(亚硫酸氢钠):n(过硫酸铵)=1:2;单体加量10%,其中n(AM):,n(NaAA):n(C16DMAAC)=84.7:15.0:0.3;反应温度45—50℃;反应时间4h;疏水单体摩尔分数0.3%。用红外光谱对产物进行表征,表明其符合理论上的结构,为目标产物。  相似文献   

16.
李冬雷 《炼油与化工》2003,14(3):12-13,16
论述了一种性能优异的新型泡沫塑料,它由共聚物(ESI)与低密度聚乙烯(LDPE)在物理发泡剂的作用下共混发泡而成。由于ESI的加入,使得LDPE发泡的加工性能、泡体结构及力学性能都发生了变化,并随着共聚物ESI中苯乙烯单体含量的不同呈现不同的变化趋势。  相似文献   

17.
P(St-MAH)的合成及其对PC/PS共混体系相容性的影响   总被引:3,自引:0,他引:3  
合成了不同马来酸酐含量的苯乙烯与马来酸酐共聚物P(St-MAH),添加到PC/PS共混体系中,可增加二者的相容性。在共混体系中,PC相Tg变化不大,而PS相Tg升高,升高的幅度与共聚物中MAH含量有关,含MAH12.8%时效果最好;也与PC/PS共混体系中PS含量有关,PS较少时升幅较大。  相似文献   

18.
AM/DMAM/AMPS降失水剂的研究   总被引:2,自引:0,他引:2  
以丙烯酰胺(AM)、N,N-二甲基丙烯酰胺(DMAM)及2-丙烯酰胺基-2-甲基丙烯酸(AMPS)为原料合成了新型油井水泥降失水剂,对其在淡水、盐水和高密度水泥浆体系中的性能进行了评价.研究表明,该聚合物在90℃时能将淡水泥浆的失水量控制在50 mL左右,对盐水泥浆的失水量也有较强的控制作用,该失水剂能保持水泥浆体系在温度150℃以内都具有较低的滤失量,在高密度水泥浆体系中表现出较高稳定性和配伍性.  相似文献   

19.
丙烯酰胺-二甲基二烯丙基氯化铵共聚物的制备   总被引:2,自引:0,他引:2  
介绍了以丙烯酰胺(AM)和二甲基二烯丙基氯化铵(DMDAAC)为原料,过硫酸铵和亚硫酸钠为引发剂,反应体系中加入无机发泡剂盐A和抗高温有机物B,采用水溶液聚合,制备丙烯酰胺-二甲基二烯丙基氯化铵共聚物的方法.考察了引发剂用量和原料单体摩尔比对共聚物处理模拟废水的效果,结果表明,在引发剂用量占单体总量的0.15%,单体含量占反应物总量40%,单体摩尔比5:1,发泡剂A用量和物质B用量各占单体总量4%,反应温度为室温,溶液pH值6~7最佳范围内,制备的共聚物处理模拟废水后上清液透光率达90%~95%.  相似文献   

20.
针对碳酸岩盐油藏,在室内合成了一种适用于该油藏酸化技术的新型稠化剂NG——AM/DM- DA AC/AA三元聚合物,并对稠化剂NG进行了酸液性能评价。该稠化剂在酸液中增稠效果好,抗剪切能力强,热稳定性较好,与各种酸液添加剂有很好的配伍性,还有较好的抗盐能力。与国内的同类产品CT1 -6进行了对比测试,结果说明:稠化剂NG在性能上可以与国内的同类产品媲美,具有较好的开发应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号