首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
埋地管道泄漏常发生在地面以下,因此准确预测管道泄漏的污染范围和泄漏量可以为后期制定应急抢险方案提供理论支撑,也是建立科学高效的应急管理平台的关键。目前针对输送压力对原油泄漏扩散范围的相关研究报道还不多见。鉴于此,以埋地原油管道泄漏事故为研究对象,采用计算流体力学方法,建立了埋地原油管道稳态泄漏三维物理模型和数学模型。利用FLUENT软件模拟了输送压力为4、8和12 MPa下原油在土壤中的泄漏扩散分布范围和速度场。模拟结果表明:三种压力条件下,原油在土壤中的运移趋势相同,泄漏初期为苹果状,逐步发展为灯泡状,最后呈现花瓶状;扩散范围随着输送压力的增大而增大,管道输送压力从4 MPa提升至8 MPa和12 MPa,扩散距离平均提升22%和38%,但泄漏扩散范围的增速逐渐放缓;原油在非饱和区的纵向扩散能力强于横向扩散能力,平均纵向扩散深度是横向扩散宽度的144%。研究结果可为埋地原油管道制定应急抢险方案提供理论支撑。  相似文献   

2.
为研究海底输气管道泄漏扩散的规律,对泄漏事故后果预测提供参考,采用正交试验法对影响海底泄漏天然气扩散规律的气体泄漏速度、洋流速度和泄漏孔径尺寸3个主要因素进行分析。选取L9(34)正交表设计试验方案,利用计算流体力学(CFD)软件对泄漏天然气在海水中的扩散进行模拟试验,使用综合比较法与方差分析法确定了影响气体扩散范围和到达海面时间的影响因素的主次关系与显著情况。结果表明,上述因素对气团形态、气体与海水混合程度,气体到达海面时间及扩散范围等均有影响。泄漏速度与泄漏孔径尺寸为影响泄漏气体到达海面时间的显著因素; 洋流速度与泄漏孔径尺寸影响泄漏气体扩散范围,但二者都为非显著因素。综合考察泄漏扩散的试验指标,泄漏孔径尺寸与洋流速度为影响结果的显著因素,泄漏速度为非显著因素。  相似文献   

3.
为探究海底高压输油管道油品泄漏后在水体中的扩散规律,对水深为20 m的管道,建立二维泄漏扩散模型,采用流体体积法,模拟不同运行工况下的海底输油管道泄漏扩散过程。对比分析运行压力、水流速度以及泄漏孔位置对油品扩散范围的影响,结果表明:运行压力<3 MPa的输油管道正上方发生小孔泄漏时,溢油到达水体表面的时间随管道运行压力的上升而缩短;如果管道运行压力>3 MPa,随着管道运行压力的上升,油品到达水体表面所需的时间基本不再变化;不同管道运行压力下的输油管道侧方发生小孔泄漏时,泄漏油品到达水体表面所需时间相近,均为30~34 s,且泄漏后的相同时间内管道运行压力越大,油品向下游的迁移距离越远。本研究对海底高压管道泄漏的应急抢险具有一定指导意义。  相似文献   

4.
采用基于Fluent离散相模型(Discrete Phase Model,DPM)的海面小泄漏量溢油扩散预报模型,进行海面持续溢油扩散的数值模拟研究。结果表明:在持续泄漏模式下,泄漏点附近原油浓度最大,沿流速方向浓度逐渐降低,流场方向对原油扩散主方向有较大影响;在相同时刻,随着流速增大,原油迁移距离增加,随着湍流强度增大,粒子随机走动增大,离散尺度增大。此外,根据FAY三阶段油膜扩展、油粒子模型以及近年来发展的两阶段法,建立全面的经验性海面溢油预报模型,并根据水面小泄漏量持续溢油试验数据,验证离散相模型与经验模型的正确性。两种模型在各时刻原油流向迁移距离及油膜面积平均相对误差不超过10%,模型合理可靠,均可用于海面溢油扩散预报研究。  相似文献   

5.
天然气管道因腐蚀穿孔等原因引起的小孔泄漏产生的信号很弱,泄漏初期很难被发现和定位,一旦天然气泄漏到大气中并达到爆炸极限,可能会造成非常严重的后果。基于计算流体力学,建立天然气管道从土壤泄漏到空气中的扩散模型,分析天然气从土壤扩散到大气后在土壤表层积聚的现象和规律。以天然气在土壤中泄漏扩散稳定后地面甲烷的浓度分布和流量为入口边界条件,研究地面甲烷质量流量、环境风速、建筑物高度对甲烷横向扩散距离和纵向扩散高度的影响。结果表明:气体在上升过程中,气团速度间断面会引起卷吸现象;随地面甲烷质量流量增加,扩散高度显著增加;随着环境风速增加,甲烷的纵向扩散高度逐渐降低,而甲烷的横向扩散距离随风速的变化近似呈线性增加关系;建筑物靠近泄漏位置的一侧会积聚大量的天然气,使建筑物两侧存在明显的浓度差,随着建筑物高度的增加,天然气扩散高度整体呈增高趋势,当建筑物高度较低时,天然气会越过建筑物顶部继续向上扩散,扩散高度反而随建筑物高度的增加而降低。  相似文献   

6.
风险评价是指对系统发生事故的危险性进行定性或定量分析,评价系统发生危险的可能性及其严重程度,其对原油管道的安全输送具有重大意义。基于云模型理论对管道风险因素评分进行修正,建立了埋地原油管道的风险计算模型,从而计算出孔口泄漏及断裂泄漏两种不同泄漏情况下一定时间内的原油泄漏量,得到了不同泄漏孔径在30、60、120 s暴露时间下的热辐射影响范围。通过对国内某条埋地原油管道实例计算表明:对于100、610 mm泄漏孔径,泄漏速率分别为460、1 685 kg/s时,10 min两者泄漏量可达到2.76×10~5、1.01×10~6kg;随着暴露时间的延长,池火灾热辐射影响范围越来越大,暴露时间为120 s时,两种泄漏孔径的死亡区域半径为40.5、69.7 m,影响区域距离可达175.8、303.6 m;该危险管段的个人风险值在可接受范围内。  相似文献   

7.
含硫天然气管道泄漏事故数值模拟与分析   总被引:1,自引:1,他引:0       下载免费PDF全文
高含硫天然气管道在运行过程中由于腐蚀等原因经常会发生孔口泄漏事故,对周围人身安全和环境造成危害。利用CFD软件Fluent对有风状态下高含硫天然气管道发生孔口泄漏后CH4和H2S的扩散情况进行了数值模拟。结果表明,CH4受浮力影响向高空扩散趋势明显,其爆炸范围集中在泄漏口附近;H2S由于初始动量较大,在泄漏孔口附近会向高空扩散,但随着动量的减少和扩散距离的增加,在重力的作用下会逐渐降落到地面附近;对比3m/s和1m/s风速情况下CH4和H2S的扩散情况,在1m/s风速下CH4的爆炸范围会略有增加,高浓度H2S会达到更高的范围,且靠近泄漏口附近的地面浓度会更低。  相似文献   

8.
为研究泄漏孔径、泄漏点水深以及外部风速对海底输气管道泄漏后果的影响,以某海底输气管道为研究对象,选取两种泄漏孔径,两种泄漏水深,9种风速进行泄漏扩散的模拟计算。计算包含泄漏模拟、气体水中扩散计算及气体在空气中扩散的CFD模拟。最终得到各泄漏工况条件下可燃气体云团体积及影响范围。通过对数据进行归纳分析,得到气云扩散及影响距离的变化规律。结果表明,泄漏速率和泄漏水深会影响海底管道泄漏后气体到达海面的气体释放面积和气体垂直流速,进而影响气云在海面的扩散后果,风速会影响气云扩散的范围和浓度分布。泄漏孔径、泄漏点水深以及外部风速是进行海底管道泄漏扩散分析的关键因素,需要在分析中进行系统性考虑以全面反映海底管道的风险水平。当前分析方法能够较全面地分析以上关键因素对后果的影响,为现场抢险、应急响应等提供判据和输入,有助于完善应急准备分析和制定更加有针对性的应急处置方案。   相似文献   

9.
天然气管线泄漏扩散及危害区域分析   总被引:13,自引:3,他引:10  
对天然气扩散浓度进行研究,可以解决泄漏气体沿地面扩散所形成的危险区域预测问题,为管道运行和抢修提供安全保障,对于输气管线的风险后果定量分析具有重要的意义。为此,考虑到天然气泄漏扩散的特殊性,选取高斯模型作为扩散危害基本模型,给出了非正常泄漏状态下模型的修正函数。结合3种典型的泄漏扩散事故情景,模拟分析了天然气职业接触浓度限值和爆炸上、下限浓度所对应的扩散距离和危害区域面积;此外还对比分析了风速、泄漏孔径及泄漏时间等因素对扩散危害面积的影响。算例结果表明,管道发生连续泄漏时,危害区域的面积随风速的增大而减小,随泄漏孔径的增大而扩大。发生大规模瞬态泄漏时,在泄漏初期,人员产生不适症状的危害区域及爆炸危险区域都随时间的增加而逐渐扩大;随着时间的延长,泄漏气体不断被空气稀释而使得浓度降低,若时间足够长,危害区域将不再存在。  相似文献   

10.
阻流器对海底管道自埋效果的数值模拟分析   总被引:2,自引:0,他引:2  
在杭州湾海底管道的埋设中应用自埋技术,取得了防止产生管跨和增加管道的稳定性的理想效果。鉴于此,介绍了海底管道埋设的自埋原理;用数值模拟的方法分析了有无阻流器2种情况下海水对管道冲刷产生的不同影响。通过对比发现,有阻流器的管道表面的压力系数在阻流器的两侧产生剧烈变化,沿水流方向由正值变为负值;升力系数变为负值;管道与海床间隙中水流的速度增大,从而使海床受到海水的剪应力也相应增大,海床易于受冲蚀,有利于实现海底管道自埋。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号