首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过综合考虑深层致密砂岩气藏特征和压裂工艺的要求,优化形成2套耐高温、低伤害、低摩阻压裂液体系。(1)低伤害聚合物压裂液体系,基液配方为0.50%~0.55%稠化剂SSF-C+0.10%交联剂SSF-CB+1%KCl,170s~(-1)、140℃下剪切120min后表观黏度为50~65mPa.s;120℃下1h后的破胶液黏度2.67mPa·s;压裂液破胶液对储层岩心的伤害率为10.25%。(2)羧甲基羟丙基胍胶压裂液体系,基液配方为0.40%CMHPG(羧甲基羟丙基胍胶)+0.35%高温增效剂(硫代硫酸盐)+0.3%助排剂(氟碳表面活性剂)+0.02%消泡剂(有机硅)+0.1%杀菌剂(甲醛)+0.3%粘土稳定剂(低分子阳离子季铵盐)+pH调节剂(碳酸钠、氢氧化钠),经实验测定,压裂液基液黏度66mPa·s,pH值9.5~10.8,交联时间1~5min;压裂液在170s~(-1)、140℃下剪切120min后表观黏度大于100mPa·s;130℃下1h后的破胶液黏度3.55mPa·s;压裂液破胶液对储层岩心的伤害率为28.29%。现场应用表明:该压裂液体系对储层的适应性好,摩阻低,降阻率为65%~75%。  相似文献   

2.
采用自制聚合物配制出了合成聚合物基高温压裂液研究了体系组成对压裂液性能的影响,考察了组成为:0.40%稠化剂XJJ-4+0.25%交联剂J-1+0.015%pH调节剂W-1+0.2%助排剂。压裂液体系的耐温抗剪切性、黏弹性、流变性以及破胶性。研究结果表明,该压裂液体系在150℃、170 s~(-1)下连续剪切2h后的黏度约120mPa·s,耐温抗剪切性良好;在线性黏弹区内,体系储能模量G′恒大于损耗模量G″,是典型的黏弹性结构流体;稠度系数(2.141 mPa·S~(0.476))较大,流变行为指数(0.476)较小,具有明显的非牛顿流体行为;加入0.01%破胶剂APS,在150℃下3 h完全破胶水化,破胶液黏度1.38mPa·s,残渣含量15 mg/L,且破胶液具有较低的表面张力(26.24mN/m)和界面张力(1.83mN/m),有利于压裂施工后破胶液顺利返排,降低对地层的伤害。  相似文献   

3.
为了改善羧甲基羟丙基胍胶(CMHPG)酸性压裂液性能,满足高温深井储层压裂改造需求,合成了一种有机交联剂,形成了组成为0.3%数0.6%CMHPG+0.6%数1.0%有机交联剂ZJ-1+0.6%交联调节剂TG-1+0.2%黏土稳定剂NW-1+0.3%高效增效剂G-ZP+0.05%APS的酸性压裂液体系,考察了该压裂液体系的耐温耐剪切性能、黏弹性、滤失性能、破胶性能和岩心基质损害率。研究结果表明,CMHPG加量为0.6%、交联剂ZJ-1加量为0.75%的压裂液体系在130℃、170 s~(-1)连续剪切90 min,冻胶的黏度大于200 mPa·s,150℃、170 s~(-1)连续剪切90 min,冻胶黏度大于100 mPa·s,表现出良好的耐温耐剪切性;CMHPG加量为0.3%的酸性压裂液冻胶的G'/G"值大于4,结构黏度强,携砂性能好;在90℃、破胶剂加量0.05%的情况下可实现1.5 h内破胶,破胶液黏度小于3 mPa·s,破胶液残渣含量为157 mg/L,对钠膨润土的防膨率为93%,表面张力23.9 mN/m,与煤油间的界面张力为0.85 mN/m;压裂液滤失量低,滤液对储层岩心基质渗透率伤害率约16%,对储层的伤害较小。该CMHPG酸性压裂液体系在某盆地页岩油探井进行了现场应用,取得了良好的应用效果。图3表7参10  相似文献   

4.
为构建新型低伤害复合清洁压裂液体系,在合成阳离子双子表面活性剂的基础上,通过复配非离子表面活性剂以及有机盐助剂,研制出一种新型Gemini表面活性剂复合清洁压裂液体系。室内对压裂液体系进行了性能评价,结果表明120 ℃、170 s-1条件下剪切90 min后体系黏度仍可维持在90 mPa·s左右,具有良好的耐温抗剪切性能;体系在较低的黏度下仍具有较高的弹性,可以满足携砂要求;体系在室温下放置90 d后黏度几乎没有变化,具有良好的稳定性;使用煤油和地层水破胶20 min后的体系黏度均小于5.0 mPa·s,说明体系破胶迅速彻底;破胶液的界面张力分别为0.416 mN/m和0.605 mN/m,有利于压裂破胶液的返排;使用煤油和地层水破胶后的破胶液对天然岩心的伤害率分别为8.71%和12.02%,具有低伤害的特点。现场应用结果分析表明,使用新型Gemini表面活性剂复合清洁压裂液体系的CZ-22井压裂后的日产油量为未压裂邻井CZ-21井的4倍多,压裂增产效果显著。  相似文献   

5.
林波  刘通义  陈光杰 《油田化学》2015,32(3):336-340
以丙烯酸、丙烯酰胺、阳离子不饱和单体、阴离子不饱和单体等为主要聚合单体,十二烷基苯磺酸钠为乳化剂,过硫酸铵.亚硫酸氢钠为引发荆,制得水溶性聚合物稠化剂BCG-1。该稠化剂能在海水中具有良好的增黏能力,0.6%BCG-1海水溶液的表观黏度大于80 mPa·s。与相关添加剂按组成为0.6%BCG-1+0.4%金属离子螯合剂BCG-5+013%黏度增效剂B-55+0.1%温度稳定剂B-13+0.02%~0.05%胶囊破胶剂BCG-10配制的压裂液30℃下放置一周,表观黏度变化较小,无沉淀产生,常温稳定性良好。该压裂液在170 s~(-1)、140℃下剪切60 min后的黏度为46.9mPa·s,耐温耐剪切性较好;落球黏度为4534.7mPa·s,携砂性较好;破胶彻底,残渣含量小于5mg/L,破胶液表面张力小于26mN/m,破胶液对支撑裂缝导流能力的伤害低于8%,具备清洁压裂液的性能特性。  相似文献   

6.
李小凡  刘贺  江安  陈民锋 《油田化学》2012,29(1):80-82,115
针对目前国内常规有机硼交联剂耐温性低的缺点,采用向有机硼交联剂中引入高价金属的方法,研制出耐温性能达到180℃的超高温有机硼交联剂DG-ZCY-15,通过考察高价金属加量及碱加量对压裂液耐温性能及交联时间的影响,得到了耐温性能达到180℃且具有良好的延迟交联性的压裂液配方:0.57%羟丙基瓜尔胶+0.45%DG-ZCY-15+0.3%DG-10温度稳定剂+0.3%碱+0.03%P-33型破胶剂+其它,综合评价了该压裂液体系的性能,并介绍了该压裂液体系在大港油田的应用情况。实验结果表明,180℃、170 s-1条件下剪切120 min后压裂液的黏度仍在50 mPa.s以上,能满足超高温、超深储层的加砂压裂施工要求。破胶液的黏度仅为1.45mPa.s,破胶液的表面张力仅27.8 mN/m,对3口井岩心的伤害率均在20%以下。该压裂液在大港油田进行了50余井次的现场试验,最高井温达189℃,施工成功率100%,均取得了良好的压裂效果。  相似文献   

7.
针对常规减阻水压裂液在页岩储层压裂施工过程中存在着较高的管路摩阻以及较低的携砂能力等问题,以新型聚合物类减阻剂GZJ-3为主要处理剂,并添加相关助剂,研究出一套适合页岩储层体积压裂用的新型低伤害清洁减阻水压裂液体系。室内对压裂液体系的综合性能进行了评价,结果表明,该压裂液体系具有良好的耐温抗剪切能力,在90℃、170 s~(-1)条件下剪切100 min后,体系黏度仍能保持在20 mPa·s左右;体系具有一定的黏弹性,携砂能力明显优于常规减阻水压裂液;当流量为3.0 m~3/h时,压裂液体系的减阻率能够达到66.7%,具有低摩阻特性;体系防膨率能够达到90%以上,具有良好的防膨性能;压裂液体系破胶后具有较低的黏度、表面张力和残渣含量,对储层岩心的基质渗透率伤害率较低,具有低伤害特性。现场试验结果表明,使用新型低伤害清洁减阻水压裂液体系的平均砂比能够达到16.1%,并且具有良好的减阻性,能够满足页岩储层压裂对排量和加砂量的要求,具有良好的推广应用前景。  相似文献   

8.
聚合物压裂液残留物对压裂裂缝支撑带和地层渗透率造成难以恢复的伤害,影响压裂改造效果.为此,研发了一种新型黏弹性表面活性剂--无聚合物压裂液.该压裂液由羧酸衍生物(NRF-01a)组成,在盐水中,它能形成抗变形的棒状或球状胶束,使溶液具有黏弹性.该液体遇水或碳氢化合物自动破胶,无残留物,能满足油层压裂改造的需要.简述了这种无残渣压裂液的形成机理,测试了压裂液的性能.室内试验结果表明,该压裂液黏度随温度上升而上升,在60℃左右上升到最大值,且经过高剪切破坏后,黏度能迅速恢复,有良好的剪切恢复性,以水稀释和与烃接触破胶后,破胶液黏度接近清水黏度,不需要另加破胶剂.破胶液残渣测定结果显示,残渣含量基本为0;对基质和裂缝支撑带的伤害率均低于常规压裂液;防膨性能和对稠油降黏作用均很显著.该压裂液现场应用取得显著效果.  相似文献   

9.
黏弹性表面活性剂在水溶液中表现出与常规聚合物类似的性能,可作为完井液稠化剂运用到完井作业中,评价了黏弹性表面活性剂作为盐水完井液、碳酸钙无伤害完井液及膨润土对黏弹性表面活性剂的影响,实验结果表明,盐水完井液中黏弹性表面活性剂随着盐浓度的增加黏度有所降低,体系比较适用于低压储层,碳酸钙无伤害完井液中黏弹性表面活性剂与碳酸钙表现出协同效应黏切力显著提高,滤失量明显降低,由于表面电荷的中和效应,膨润土对黏弹性表面活性剂溶液黏度破坏较大.  相似文献   

10.
制备了CO_2响应性的黏弹性表面活性剂TAV作为清洁压裂液的稠化剂,筛选了反离子盐,得到了压裂液体系的最佳配方,测定了TAV溶液接触CO_2质子化前后的油水界面张力,考察了压裂液的流变性、携砂性、破胶与循环性能及其对岩心伤害情况。实验结果表明,CO_2响应后的TAV溶液可大幅降低油水界面张力,2.5%(w)的TAV溶液在0.2%(w)KCl助剂下,溶液黏度可达78 mPa·s,在110℃下流变剪切120 min黏度满足要求,体系对20~100目范围内的石英砂具有很好的悬浮性,120 min后仍处于均匀分布的状态;电导率测试证实该体系可重复CO_2/N_2响应,在40℃时通N_2后8 min即可破胶,且对岩心伤害最低达到12.7%。  相似文献   

11.
针对目前阳离子清洁压裂液存在的成本高、吸附造成的伤害大的问题,研发出了一种小分子阴离子型、抗剪切、低伤害、多功能的环保型清洁压裂液体系,其配方为:4%F-VES+0.5%KCl。室内性能评价结果表明,该压裂液的耐温耐剪切性良好,在80℃的表观黏度为40 mPa.s,在60℃连续剪切70 min后的黏度为67 mPa.s;在常温下与原油混合可迅速破胶,破胶液黏度小于5 mPa.s,表面张力为25 mN/m;静态悬砂速度为0.02~0.04cm/s;对岩心的伤害率为14.5%,比瓜胶压裂液和VES压裂液分别下降了58.6%和45.5%;对支撑剂导流能力的伤害率为9%,较VES压裂液下降了近74%;破胶液的驱油率为65%,与驱油剂WP-1相当。  相似文献   

12.
速溶耐盐聚合物是高矿化度地层水和返排水有效利用的关键产品,实现增黏助排一体化是稠化剂研发的主要方向。设计合成了一种弱疏水缔合聚合物,优化形成了增黏助排一体化分散液,并对压裂液的综合性能进行了评价研究。该聚合物分散液可满足194 557.93 mg/L的超高矿化水在线配制要求,在分散液用量0.1%~1.2%情况下可以实现黏度2~106 mPa·s可调;分散液用量大于0.4%以后压裂液破胶液表面张力小于27 mN/m;90℃下,剪切1h后增黏助排一体化压裂液黏度大于50 mPa·s;1.0%聚合物分散液在80℃下破胶2 h,破胶液黏度为4 mPa·s左右;在聚合物分散液用量为0.1%时,压裂液减阻率大于65%。该聚合物分散液可以满足超高矿化度地层水及返排液配液要求,可以实现在线变黏及助排一体化,大幅度降低压裂液成本,简化现场配液流程,具有广泛应用前景。  相似文献   

13.
针对目前常用的CO_2泡沫压裂液存在的与CO_2配伍性差、交联不易控制、耐温耐剪切性能差、残渣含量高等问题,采用丙烯酰胺类多元共聚物BCG-8为稠化剂,通过配套添加剂优选及用量优化,形成了的基础配方为0.3%~0.6%稠化剂BCG-8+0.2%~0.45%稠化增效剂(起泡剂)B-55+0.2%~0.3%调节剂B-14+1%KCl的聚合物-CO_2泡沫压裂液体系,研究了该压裂液体系的泡沫流变性、耐温耐剪切性能、携砂性能及破胶性能。研究结果表明,该体系泡沫质量在55%~75%时表观黏度保持在较高值,在140℃、剪切速率170 s~(-1)下剪切120 min后表观黏度保持在30 mPa·s以上,黏弹性的作用使其携砂性能明显优于HPG冻胶体系的,且该体系破胶液的表面张力低于24 mN/m、残渣含量低至0.1 mg/L。该压裂液体系在延长油田页岩气井中施工顺利,措施见效快,增产效果显著,可用于页岩气等非常规油气藏的储层改造。  相似文献   

14.
国内低中温清洁压裂液研究进展及应用展望   总被引:5,自引:0,他引:5  
清洁压裂液的携砂黏度和抗剪切性能严格受温度的控制,为此总结了清洁压裂液的适用温度为80℃以下,称为低一中温清洁压裂液.清洁压裂液又称黏弹性表面活性刑VES压裂液,不合聚合物,不需要交联剂和破胶荆,现场配液简单,能有效控制缝高,施工摩阻只有水的25%~40%,液体效率达85%,远高于胍胶压裂液的52%,在渗透率小于5×10-3μm2的低渗透储层中滤失量小,对储层伤害小,压裂后油气增产效果明显比胍胶压裂液好.实现清洁压裂液在天然气中破胶和提高清洁压裂液抗温耐剪切性及降低施工成本,是清洁酸液发展的方向.  相似文献   

15.
针对低温煤层气储层压裂改造难点,研制出一种低温煤层气清洁压裂液配方:0.4%VES+0.15%SSN+1.0%防膨剂+0.06%增效剂+0.08%防残渣剂,并针对该体系研制出了一种低温隐形破胶剂(20~35℃),对该清洁压裂液的携砂性、流变稳定性以及破胶性能等重要参数进行了评价。结果表明,该清洁压裂液抗剪切稀释性能强;20℃时,陶粒在该清洁压裂液中的沉降速度为0.528 cm/min;岩心伤害率为17.1%;裂缝导流能力强;低摩阻;对煤粉分散运移具有一定抑制性;加入0.45%自制低温隐形破胶剂,在3~4 h完全破胶,破胶后溶液的表面张力为23.5 mN/m,破胶液黏度为3.85 mPa·s,破胶后残渣含量为6.5 mg/L,破胶液岩心伤害率为13.5%,破胶液与地层水配伍性良好。  相似文献   

16.
耐高温FRK-VES清洁压裂液性能评价   总被引:4,自引:0,他引:4  
针对国内外清洁压裂液耐温性能较差的问题,开发出一种新型的两性离子表面活性剂压裂液体系。该清洁压裂液体系优化配方为4.0%FRK-VES+0.30%稀盐酸+4.0%KCl溶液+1.0%苯甲酸钠。室内实验对FRK-VES压裂液体系性能进行了评价:耐温耐剪切性良好,120℃的表观黏度为83 mPa.s(170 1/s),30℃连续剪切60 min的黏度为3167 mPa.s;携砂性能良好,摩阻较小,在常温下与原油和地层水混合可迅速破胶,破胶液黏度小于5 mPa.s,并且无残渣,破胶液界面张力为0.75 mN/m,表面张力为24.8 mN/m;该体系滤失系数为1.93×10-4m/min1/2,对渗透率为1μm2和0.2μm2储层的渗透率伤害率分别为19.56%、25.36%,适合不超过120℃的高温低渗砂岩的储层改造。该清洁压裂液在胜利油田、华北分公司现场施工,效果较好。图3表5参11  相似文献   

17.
刘朝曦 《油田化学》2013,30(4):509-512
针对目前低渗、碱敏、深层、高温等在压裂中所存在的问题,研发出一个耐高温共聚物压裂液体系。采用共聚物FTS-17作为稠化剂,引入具有延缓释放功能的复合型交联剂(含有多种金属离子以及可以和它们形成配住络合物的有机化合物,可以在弱酸性条件下与压裂液进行交联),通过实验确定了原胶液与交联剂质量比和复合交联剂中锆盐含量的最佳适用范围,考察了耐140℃高温的压裂液流变、滤失及破胶性能,并进行了现场实验与应用。耐140℃高温的压裂液配方为:0.6%FTS-17稠化剂+0.3%FTZP-6助排剂+0.3%FTFM起泡剂+0.2%FTFP-6防膨剂+0.6%FTJL-3交联剂+0.02%FTPJ-8破胶剂,在恒温140℃、剪切速率170 s-1条件下,连续剪切120min以上,压裂液的黏度大于120 mPa·s,这表明该压裂液体系具有良好的耐温和抗剪切性能。此外,压裂液破胶的残渣量仅为50mg/L,破胶液的黏度仅为1.6mPa·s,破胶液的表面张力为23.56mN/m,与煤油的界面张力为2.46mN/m,这表明该压裂液不仅具有良好的降滤失性,而且残渣量低,对地层的伤害小。共聚物压裂液体系已在青海、长庆等油田进行了现场试验,现场最高施工压力80MPa,压裂后返排率达75%。  相似文献   

18.
为有效降低清洁压裂液药剂用量及对储层潜在的伤害,使用MCR301界面流变仪,系统研究了新型阴离子双子表面活性剂(GA-16)、正十二醇、疏水缔合聚合物(GRF-1H)及纳米二氧化钛对GA-16溶液黏度的影响。结果表明,随着GA-16质量分数增大,其溶液的黏度增大,当GA-16质量分数为3%时具有经济高效性;GRF-1H及正十二醇均能有效提高GA-16溶液黏度,纳米二氧化钛能增强GA-16溶液耐温性。根据试验结果优选出复配体系配方为3%GA-16+3.5%十二醇+0.15%GRF-1H+0.125%纳米二氧化钛(配方中的百分数为质量分数),可满足中低温(≤90℃)油藏清洁压裂液有效携带支撑剂所需的黏度(25mPa·s)要求。  相似文献   

19.
樊悦  金浩  方波  卢拥军  邱晓惠  孙瑞 《油田化学》2019,36(2):209-214
为了改善纤维素溶液的增稠能力和交联性能,合成了一种新型疏水醚化改性剂(3-氯-2-羟丙基芥酸酰胺醋酸铵),并采用该改性剂对羧甲基羟乙基纤维素(CMHEC)进行疏水改性,首次制得了芥酸酰胺丙基二甲基叔胺疏水改性纤维素(ED-CMHEC),研究了CMHEC和ED-CMHEC溶液的流变性能(表观黏度、流动曲线、触变性和黏弹性)和交联性能。研究结果表明,改性后ED-CMHEC溶液的表观黏度得到显著提升并表现出更显著的触变性与黏弹性。质量分数0.3%的CMHEC和ED-CMHEC溶液在30℃、170 s~(-1)的表观黏度分别为18 mPa·s和71mPa·s,后者较前者提高了2.94倍。不同质量分数(0.3%数0.5%)的CMHEC和ED-CMHEC溶液均表现出剪切变稀性质,其流动曲线可用Cross模型进行描述。有机锆交联剂FAC-201加量为0.2%时,质量分数0.3%ED-CMHEC溶液交联形成凝胶的黏度是改性前的2.4倍,表现出更强的交联性能。图9表4参22  相似文献   

20.
以丙烯酰胺(AM)、丙烯酸(AA)、两性甜菜碱单体(MADPS)和油溶性双尾疏水单体(DiC_(12)AM)为原料通过自由基聚合制备了一种疏水缔合聚合物HASPAM,通过单因素方法优化了制备条件,采用1H NMR和黏弹性测试等方法考察了HASPAM的性能。实验结果表明,HASPAM的最佳制备条件为:n(AM)∶n(AA)=4∶1,MADPS用量0.6%(x),DiC_(12)AM用量0.2%(x),单体总用量30%(w),引发剂加量为单体总质量的0.15%,pH=7,25℃,4.0 h。在该条件下制备的0.4%(w)HASPAM溶液黏度为148.5 mPa·s,临界缔合浓度约为400 mg/L,在140℃、170 s~(-1)下剪切120 min后黏度保持在63 mPa·s。HASPAM的抗盐性能较好,当过硫酸铵加量为0.08%(w)时HASPAM溶液可完全破胶,且对岩心伤害最低为14.56%,可作为压裂液对储层进行压裂改造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号