首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
在地震勘探设计方面,通常采用的基于射线理论的正演模拟方法应用几何地震学原理,其缺陷是不能定量分析不同采集参数对高陡构造成像的影响。应用基于波动方程理论和散射场数值模拟方法能够定量分析道间距、覆盖次数、炮检距范围等因素对高陡构造成像的影响,为清晰成像高陡构造选择合理地震采集参数提供了更可靠的依据。文中通过实例分析,探讨了基于波动方程理论和散射场数值模拟方法在地震勘探采集方案设计中的应用,并展示了应用效果。  相似文献   

2.
在地震勘探设计方面,通常采用的基于射线理论的正演模拟方法应用几何地震学原理,其缺陷是不能定量分析不同采集参数对高陡构造成像的影响。应用基于波动方程理论和散射场数值模拟方法能够定量分析道间距、覆盖次数、炮检距范围等因素对高陡构造成像的影响,为清晰成像高陡构造选择合理地震采集参数提供了更可靠的依据。文中通过实例分析,探讨了基于波动方程理论和散射场数值模拟方法在地震勘探采集方案设计中的应用,并展示了应用效果。  相似文献   

3.
基于散射成像数值模拟的地震采集参数论证   总被引:8,自引:3,他引:5  
基于地质地球物理模型论证地震采集参数技术,是保证地震采集设计科学化、实用化的重要手段。目前国内外广泛应用的地震数据采集参数论证软件都是基于反射波的射线理论,但在构造复杂、地层倾角较陡或岩性横向突变时,在地表往往接收不到反射波,但可以接收到不均匀体产生的散射波,因此可以考虑基于散射波的地震成像。对基于地震散射波成像的数值模拟方法进行了讨论;通过对勘探目标的地质地球物理模型的正、反演,进行了地震采集参数的论证和观测系统的优化设计;并对优化设计的观测系统和老观测系统的三维偏移剖面进行了对比。应用实例说明,通过论证的优化观测系统,能大大改善剖面的品质,对地下复杂地质体精确成像。  相似文献   

4.
羌塘盆地前期常规二维地震勘探中,获得的资料有效波反射能量较弱,波组连续性较差,相干噪声、散射噪声较强,资料信噪比较低。分析认为提高覆盖次数对该区的叠加成像效果有明显改善,在此基础上,提出了3种宽线观测系统采集方案,经理论分析和应用对比,2L2S(炮点分布在接收线之外35m)的宽线观测系统为最佳方案。实践表明:该方案在压制侧向的散射噪声、相干噪声有较好的效果;在单线采集的基础上成倍地增加了叠加剖面覆盖次数,增强了有效信号,提高了资料的整体信噪比。  相似文献   

5.
ISS高密度地震采集是以干扰炮相对有效炮为随机信号的基本理念对地震数据进行采集的方法,其大部分有效信号会淹没于噪声之中。基于此,本文提出-种在十字排列域或检波点域进行矢量中值滤波方法,并针对理论模型简要分析了不同空间滤波参数对保持有效信号和压制干扰信号的影响及处理中应注意的问题;实际单炮地震数据的处理和叠加成像结果表明,该方法在有效压制相干炮噪声的同时,能够较好地保持有效信号,提高资料信噪比,显著优于常规去噪方法的处理效果。  相似文献   

6.
南方山地宽线地震采集方法与效果   总被引:1,自引:0,他引:1  
桂中坳陷北部地区地震地质条件极为复杂,主要表现为地表变化剧烈、近地表结构复杂并且横向变化大、地下碳酸岩盐目的层波阻抗差异小、界面反射信号弱。导致了地震记录信噪比低、各种干扰波发育和近地表静校正问题严重。通过试验宽线采集技术,即二维测线的三维观测方法,利用了相邻道的面元叠加信息,有效压制了各种干扰,明显提高了剖面质量。南方山地特殊地震地质条件下的宽线采集技术,是压制干扰,提高剖面信噪比的有效方法,同时不会引起施工成本的大幅度提升,可在类似的低信噪比地区推广。  相似文献   

7.
 本文针对近地表散射干扰,从建立噪声时距方程出发,通过计算噪声剩余时差,讨论了三维地震观测系统压制散射干扰的定量分析方法:①利用地震剖面、井资料、地质背景资料、地理信息确定目的层的深度、平均速度和主要噪声类型及其传播速度,在此基础上设计出多套观测系统;②根据激发点、接收点和散射源的大地坐标计算CMP道集中每道的位置关系,进而计算噪声的剩余时差;③计算工区内或某个子区内CMP的噪声压制特性,并绘制平面图,统计噪声压制特性的分布,进而绘制噪声压制特性图和频数分布图;④对各种观测系统应用噪声压制特性图和频数分布图进行综合分析,确定各观测系统的压噪效果,从而选择压噪能力较强的三维观测系统。数值计算和实际地震数据处理分析表明,文中所提压噪估算方法可用来定量估算三维地震采集观测系统的压噪能力,评价噪声压制特性,有利于优化三维观测系统参数。  相似文献   

8.
山前带地震勘探技术进展与对策研究   总被引:1,自引:0,他引:1  
宋桂桥  于世焕 《石油物探》2012,(6):539-547,535
地震勘探技术是制约复杂山前构造带油气勘探的瓶颈技术。山前带复杂的表层及地下地质条件,给地震勘探带来了极大挑战,主要表现在地震资料信噪比低;横向速度变化大,地震成像方法不适用;山前带地下复杂构造的准确解释困难。建议采取的技术对策包括:深化对山前带复杂波场的认识;以模型为基础设计宽线大组合二维、宽方位高覆盖三维等观测系统;进一步改善激发、接收效果;探索散射干扰、非纵方向的非线性相干噪声等山前带特殊噪声的压制方法;多方法联合提高静校正效果;研究应用高效的逆时偏移技术,重点研究低信噪比资料速度建模技术;前瞻性地研究起伏地表各向异性逆时偏移、全波形反演等新技术。同时,建议严格采集、处理、解释全过程的质量控制,不断改进单项方法技术的应用效果,持续优化整个地震技术的应用流程,做好地震技术一体化和技术集成,在地质指导下通过综合物探手段提高山前带勘探效果。  相似文献   

9.
宽方位角地震数据采样不满足数据采样相对均匀的要求,其主要特征为:①实际地震道相邻道之间距离小于理论道间距;②横向炮检距越大,相邻道之间距离越小,其变化率也越大,检波线的空间采样越不规则。宽方位角地震数据的上述特点导致能量较强的折射波、面波等线性噪声的时距曲线形态随着横向炮检距的增大而向双曲线变化,因此用常规线性干扰波压制技术不能完全消除线性噪声。为此,本文分析了线性时差校正联合二维傅里叶变换滤波技术及基于十字交叉排列的三维锥形滤波技术压制宽方位角线性干扰波的效果,结果表明,这两种方法可从不同角度调整地震数据的空间采样,使其变得均匀,满足不同域的转换算法对空间采样的要求,均能很好地压制宽方位角地震数据的线性噪声。  相似文献   

10.
鄂尔多斯盆地黄土塬区多线地震采集技术   总被引:6,自引:5,他引:1  
鄂尔多斯南部的黄土高原,黄土巨厚,干燥疏松,厚度横向变化剧烈,对地震波吸收衰减严重,且相干干扰、次生干扰、黄土谐振干扰极其严重,加之地形复杂,黄土塬区一直被视为地震勘探的“禁区”。黄土塬区多线地震采集技术,即采用二维测线三维观测方法采集,利用相邻道面元叠加处理,增加了优选炮点的条件,保证了全线均匀的高覆盖次数,有效地压制了干扰,剖面质量大幅度提高。该项技术已可在黄土复杂区做正规测网,与黄土塬区高分辨率沟中弯线、黄土塬山地网状三维共同组成黄土塬区地震勘探技术系列,服务于黄土塬不同的勘探目标。黄土塬区多线地震采集方法,是压制干扰,提高剖面信噪比的有效方法,可在地表复杂区、低信噪比地区推广应用。  相似文献   

11.
"全国油气资源战略选区调查与评价"项目选取柴达木盆地西部英雄岭地区为攻关地区,开展复杂山地地震勘探技术研究。本文在分析工区地震勘探难点及以往地震技术应用效果与不足的基础上,提出了新的技术思路,通过试验总结形成了复杂山地宽线地震采集、处理配套技术,应用该套技术提高了工区地震资料品质,落实了目标区构造圈闭,证明宽线地震勘探技术是适用于柴达木盆地西部复杂山地的勘探技术。  相似文献   

12.
拉东投影法三维叠前时间偏移   总被引:2,自引:2,他引:0  
对地下地质构造正确成像是地震勘探的最终目的,由于三维地震资料采集不可能都沿垂直构造走向的方向进行,这就给地震资料的三维处理带来了许多困难。本文将三维叠后拉东投影偏移思想应用于三维叠前处理,提出了三维叠前投影时间偏移算法。利用拉东投影变换的原理,将整个三维叠前数据体投影到各方向的径向线上,使各方位角的构造都包含在其中某条或多条径向剖面上。投影完成后,形成一系列独立的二维叠前径向线,然后采用各种标准的二维叠前时间偏移成像方法来实现各径向线的叠前时间偏移。当各径向剖面偏移完成后,在时间切片上进行反投影,从而最终形成三维叠前时间偏移结果。实际应用表明,用本方法进行三维叠前时间偏移,可明显提高剖面的信噪比,边界反射很弱,并且资料的中深层成像效果较好。  相似文献   

13.
叠前时间偏移技术在复杂地区三维资料处理中的应   总被引:13,自引:2,他引:11  
在四川东部复杂地区,地表起伏大,地震地质条件复杂多变,表层速度变化剧烈;地腹构造褶皱强烈,逆冲断层发育,地震波传播速度纵横向变化大。为了得到好的成像效果,在作好静校正处理的基础上还要选择合适的偏移方法。折射层析静校正通过迭代求解,获得表层速度模型,在此基础上实现静校正量的计算,它将首波方法的稳定性和回折波方法的灵活性结合起来,较好地解决了复杂地区静校正问题;叠前时间偏移是复杂构造成像最有效的方法之一,能适应纵横向速度变化较大的情况,适用于大倾角的偏移成像。影响偏移成像效果的主要因素是偏移孔径和偏移速度。偏移孔径过小,偏移剖面将损失陡倾角的同相轴;偏移的孔径过大,会降低低信噪比资料的偏移质量,在实际使用中应根据倾角来确定孔径。叠前偏移对偏移速度较敏感,较小的速度误差都可能影响偏移成像效果,在实际使用中通过迭代确定最佳偏移速度。文章对多个复杂地区的三维资料进行了叠前时间偏移处理,获得了归位精度高、质量好、断层断点清楚的成像剖面,为完成地质任务提供了较好的资料。  相似文献   

14.
胜金口西山地地表和地下条件复杂,造成激发、接收条件差,原始地震资料信噪比低,静校正问题突出,资料成像困难。针对以上难点,在资料采集方面,对观测系统精心设计,采用6线18炮砖墙式观测系统;根据工区不同地表和岩性分布,将工区分为山地(山前带)、农田和戈壁砾石区,分别采用炸药震源和可控震源激发;以深井微测井为主结合小折射方法,提高表层建模精度,进而通过静校正数据库建立全区表层结构模型。在地震资料处理方面,以提高信噪比和突出断层下盘信息为主要目标,做好静校正、叠前去噪、子波整形、反褶积、偏移等关键处理步骤;在进行三维偏移时通过多次偏移速度扫描,建立了比较精确的偏移速度场。采用这套山地三维地震采集技术与处理方法所获得的地震资料,能够满足该区地震解释需要。  相似文献   

15.
宽线地震勘探技术因其性价比优势在复杂陆地探区油气资源勘探中应用广泛,成功案例较多,但在我国海洋地震勘探领域的成功应用并不多见。此文利用南海北部湾盆地某三维探区的二源三缆一束航海线,结合地下共深度点(CDP)面元的合理定义,系统地进行了基于二维、三维叠前深度偏移算法的多种宽线成像试验,并从成像效果、信噪比等方面进行了详细的对比分析。试验表明海洋宽线的成像处理选取二维算法成像效果较三维算法的成像结果好。对比以前的二维叠前时间偏移结果,工区区域宽线地震资料叠前深度偏移处理取得了较好的应用效果。  相似文献   

16.
"采集脚印"是三维地震勘探中的一种地震噪声,是三维地震观测系统的固有属性,严重影响采集资料的振幅保真度及处理和解释效果。本文论述的三维观测系统采集脚印定量分析技术可定量描述三维观测系统接收、激发参数及施工方式与采集脚印的关系,综合考虑道距、接收线距、炮点距、炮线距、排列滚动线数、地层深度及变观方式等因素对形成采集脚印的影响,提供了从设计源头压制采集脚印、优化三维观测系统的方法。该方法在地震勘探实践中取得了良好的应用效果。  相似文献   

17.
依据三维地震勘探观测系统的对称性、连续性、均匀性和充分性,定性分析观测系统各参数对叠前成像效果的影响,以此优选观测系统相关参数,设计观测系统。但目前这类方法尚未达到量化分析程度。本文使用双聚焦计算方法,基于克希霍夫积分偏移计算原理,以观测系统双聚焦主瓣与最大旁瓣的比值作为成像效果量化分析指标,并通过地质模型和实例资料的应用效果验证了该方法的有效性,为三维地震勘探观测系统及其参数的优选与设计提供了一种新的量化分析法。  相似文献   

18.
基于地震照明、面向勘探目标的三维观测系统优化设计   总被引:3,自引:0,他引:3  
基于水平层状介质假设的常规三维地震勘探观测系统设计方法难以适应复杂构造区。本文利用地震照明技术,参考前人对二维问题的研究成果,发展了面向勘探目标成像的三维地震勘探观测系统优化设计方法。该方法利用三维单程傅里叶有限差分波场传播算子将勘探目的层的平面源延拓到地表,通过分析从目的层延拓到地表的地震照明能量分布,确定面向勘探目标的最佳激发范围。利用该方法可明显提高照明阴影区的照明强度,进而改善地下阴影区的成像质量。基于三维SEG-EAGE盐丘模型的地震照明与偏移成像试验结果,验证了本文面向勘探目标的三维地震观测系统优化设计方法的有效性与正确性。  相似文献   

19.
借鉴陆地宽线采集方式,首次提出了海上拖缆宽线地震采集处理理论。针对南海珠江口盆地潮汕坳陷中生界地层中进行了海上拖缆宽线处理试验攻关研究,并对应用效果进行了分析。结果表明,宽线资料与常规二维资料相比,表现出了深层反射清晰、反射波丰富、资料信噪比高、横向连续性好的特征。海上拖缆宽线地震采集是提高中深层地震资料质量较为经济、实用、有效的技术,明显提高了潮汕坳陷中生界地层中地震成像效果。  相似文献   

20.
地震偏移成像是地震资料处理的重要组成部分。笔者和同事从1994年开始一直致力于投影偏移成像的研究。应用层析成像理论研究了包括三维和二维叠后及叠前投影偏移(时间域和深度域)等八种方法。本文主要介绍三维叠后投影偏移的原理及其实现方法。以傅里叶投影定理为基础,对三维数据体沿时间轴做水平时间切片,并在其上做Radon投影,形成一系列径向线二维剖面,尔后进行Radon插值和反投影,完成三维偏移。此法与一步法偏移相比,剖面整体的信噪比有所提高,局部地段的同相轴连续性和成像清晰度有较为明显的改善。在本文中还讨论了偏移孔径问题。基于层析原理对三维数体做完全观测角投影的偏移方法和基于双平方根算子炮点一偏移距域的叠前偏移等方法都不存在选择偏移孔径的问题。那种认为“一切偏移方法都必需考虑偏移孔径的影响”的观点是不正确的,对今后偏移方法的发展也是不利的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号