首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The riser reactor is the key unit in the fluid catalytic cracking (FCC) process. As the FCC feedstocks become heavier, the product mixture of oil, gas and catalysts must be separated immediately at the outlet of the riser to avoid excessive coking. The quick separation system is the core equipment in the FCC unit. China University of Petroleum (Beijing) has developed many kinds of separation system including the fender-stripping cyclone and circulating-stripping cyclone systems, which can increase the separation efficiency and reduce the pressure drop remarkably. For the inner riser system, a vortex quick separation system has been developed. It contains a vortex quick separator and an isolated shell. In order to reduce the separation time, a new type of separator called the short residence time separator system was developed. It can further reduce the separation time to less than 1 s. In this paper, the corresponding design principles, structure and industrial application of these different kinds of separation systems are reviewed. A system that can simultaneously realize quick oil gas separation, quick oil gas extraction and quick pre-stripping of catalysts at the end of the riser is the trend in the future.  相似文献   

2.
12-Tungstophosphoric acid(PW) supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization(ODS) of mixed thiophenic compounds in model oil and crude oil under mild conditions using hydrogen peroxide(H_2O_2) as an oxidizing agent. A one-factor-at-a-time method was applied for optimizing the parameters such as temperature, reaction time, amount of catalyst, type of extractant and oxidant-tosulfur compounds(S-compounds) molar ratio. The corresponding products can be easily removed from the model oil by using ethanol as the best extractant. The results showed high catalytic activity of PW/KSF in the oxidative removal of dibenzothiophene(DBT) and mixed thiophenic model oil under atmospheric pressure at 75 ℃ in a biphasic system. To investigate the oxidation and adsorption effects of crude oil composition on ODS, the effects of cyclohexene, 1,7-octadiene and o-xylene with different concentrations were studied.  相似文献   

3.
Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniques to tackle this problem. These absorbents can be classified based on their characteristics of recyclability into irreversible and reversible ones. In this review, we discuss the application of several materials as oil absorbents, according to their classification and characteristics such as hydrophobicity, surface area and oil absorption capacity. Also, the fabrication methods for some materials are presented and analyzed.  相似文献   

4.
Composition and molecular mass distribution of n-alkanes in asphaltenes of crude oils of different ages and in wax deposits formed in the borehole equipment were studied. In asphaltenes, n-alkanes from C_(12) to C_(60) were detected. The high molecular weight paraffins in asphaltenes would form a crystalline phase with a melting point of 80–90 ℃. The peculiarities of the redistribution of high molecular paraffin hydrocarbons between oil and the corresponding wax deposit were detected. In the oils, the high molecular weight paraffinic hydrocarbons C_(50)–C_(60)were found, which were not practically detected in the corresponding wax deposits.  相似文献   

5.
In this study, the effects of pH on slurrying properties of petroleum coke water slurry(PCWS) were investigated. The slurrying concentration, rheological characteristics and stability of PCWS were studied with four different types of additives at pH varying from 5 to 11.The results showed that the slurrying concentration, rheological characteristics and stability of PCWS all increased at first and then decreased with increasing pH from 5 to 11,and a pH of around 9 was found to be the most favorable acid–alkali environment to all these three slurrying properties. It was also indicated that only in a moderate alkaline environment can the additives be active enough to react with particle surfaces sufficiently to obtain good slurrying concentration and form a stable three-dimensional network structure, which can support strong pseudoplastic characteristics and good stability. An acid environment was a very unfavorable factor to the slurrying properties of PCWS.  相似文献   

6.
The genesis of the fine crystalline dolomites that exhibit good to excellent reservoir properties in the upper fourth member of the Eocene Shahejie Formation(Es_4~s)around the Sikou Sag, Bohai Bay Basin, is uncertain. This paper investigates the formation mechanisms of this fine crystalline dolomite using XRD, SEM, thin section analysis and geochemical data. The stratigraphy of the Sikou lacustrine carbonate is dominated by the repetition of metre-scale, high-frequency deposition cycles, and the amount of dolomite within a cycle increases upward from the cycle bottom. These dolomite crystals are 2–30 μm in length, subhedral to anhedral in shape and typically replace both grains and matrix. They also occur as rim cement and have thin lamellae within ooid cortices. Textural relations indicate that the dolomite predates equant sparry calcite cement and coarse calcite cement. The Sr concentrations of dolomites range from 900 to 1200 ppm. Dolomite δ~(18)O values(-11.3 to-8.2 ‰ PDB) are depleted relative to calcite mudstone(-8.3 to-5.4 ‰ PDB) that precipitated from lake water, while δ~(13)C values(0.06–1.74 ‰ PDB) are within the normal range of calcite mudstone values(-2.13 to 1.99 ‰ PDB). High~(87)Sr/~(86)Sr values(0.710210–0.710844) indicate that amounts of Ca~(2+) and Mg~(2+)have been derived from the chemical weathering of Palaeozoic carbonate bedrocks. The high strontium concentration indicates that hypersaline conditions were maintainedduring the formation of the dolomites and that the dolomites were formed by the replacement of precursor calcite or by direct precipitation.  相似文献   

7.
In this paper, the methane adsorption behaviours in slit-like chlorite nanopores were investigated using the grand canonical Monte Carlo simulation method, and the influences of the pore sizes, temperatures, water, and compositions on methane adsorption on chlorite were discussed. Our investigation revealed that the isosteric heat of adsorption of methane in slit-like chlorite nanopores decreased with an increase in pore size and was less than 42 kJ/mol, suggesting that methane adsorbed on chlorite through physical adsorption. The methane excess adsorption capacity increased with the increase in the pore size in micropores and decreased with the increase in the pore size in mesopores. The methane excess adsorption capacity in chlorite pores increased with an increase in pressure or decrease in pore size. With an increase in temperature, the isosteric heats of adsorption of methane decreased and the methane adsorption sites on chlorite changed from lowerenergy adsorption sites to higher-energy sites, leading to the reduction in the methane excess adsorption capacity. Water molecules in chlorite pores occupied the pore wall in a directional manner, which may be related to the van der Waals and Coulomb force interactions and the hydrogen bonding interaction. It was also found that water molecules existed as aggregates. With increasing water content, the water molecules occupied the adsorption sites and adsorption space of the methane, leading to a reduction in the methane excess adsorption capacity. The excess adsorption capacity of gas on chlorite decreased in the following order: carbon dioxide > methane > nitrogen. If the mole fraction of nitrogen or carbon dioxide in the binary gas mixture increased, the mole fraction of methane decreased, methane adsorption sites changed, and methane adsorption space was reduced, resulting in the decrease in the methane excess adsorption capacity.  相似文献   

8.
Fracture network connectivity and aperture(or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a twodimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution,since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions(from narrow to broad), power-law distributions(from narrow to broad), and one case where the aperture is proportional to the fracture length. We find that even a wellconnected fracture network can behave like a much sparser network when the aperture distribution is broad enough(ɑ≤ 2 for power-law aperture distributions and σ≥ 0.4for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations.  相似文献   

9.
A remote-control tether-less isolation tool is a mechanical device that is normally used in pipelines to block the flow at a given position by transforming a blocking module. In this study, the interactions between the fluid and the plug module of the isolation tool were investigated. Simulations of the plug process and particle image velocimetry measurements were performed to study the flow characteristics. Numerical solutions for the continuity, momentum, and energy equations were obtained by using commercial software based on finite-volume techniques. Box–Behnken design was applied, and response surface methodology(RSM)-based CFD simulation analysis was conducted. The dynamic model in the plug process was built by RSM and used to evaluate the influences of the main mechanical parameters on the pressure during the plug process. The diameter of the isolation tool and the diameter of the plug module have strong influences on the process, and the length of the isolation tool has only a little influence on the plug process.  相似文献   

10.
An oil-based drilling fluid should be stable and tolerant to high temperatures for use in deep drilling. An invert emulsion of water in oil is a good choice as an oilbased drilling fluid which is a mixture of a solid phase and two immiscible liquid phases stabilized by a polymeric surfactant. In deep drilling, due to high temperatures, the polymeric surfactant degrades and a phase separation occurs. Here, octadecyltrimethoxysilane-modified silica nanoparticles were used to form a stable invert emulsion of water in oil for the drilling fluid model which resulted in a milky fluid with the formation of 60 μm water droplets. In addition, rheological study showed that using hydrophobic silica nanoparticles resulted in a stable water in oil invert emulsion with desired properties for a drilling fluid that can be modified by adjusting the nanoparticle nature and content. Aging experiments at 120 °C indicated that they also have good stability at high temperatures for challenging drilling operations.  相似文献   

11.
由于反演问题的不适定性,最小二乘逆时偏移(LSRTM)收敛速度缓慢,甚至陷入局部极值,无法收敛。另一方面,由于观测系统及地层吸收衰减的影响,往往造成地下照明盲区,LSRTM无法恢复照明盲区的构造。为此,通过测井数据构建先验反射系数模型,将其作为正则化项加入LSRTM约束反演过程,发展了基于先验模型约束的最小二乘逆时偏移算法(RLSRTM),并通过动态的正则化参数及对正则化项的预处理改善了约束效果。在实现算法的基础上对稀疏Marmousi模型进行了成像测试,计算结果表明:1常规LSRTM能够压制逆时偏移(RTM)结果中的成像噪声,补偿深部反射同相轴能量,但是对于照明不均匀现象的补偿效果有限,并且照明盲区的构造信息无法恢复;2正则化项预处理RLSRTM能够进一步恢复LSRTM照明补偿不足区域的构造信息,尤其对深部的背斜构造边界及其他地层刻画得更加清楚,也可以恢复部分照明盲区的构造信息;3无正则化项预处理RLSRTM的部分构造边界模糊,甚至出现假构造。因此正则化项梯度预处理RLSRTM能够加快收敛速度,改善弱照明及照明盲区的成像分辨率和保幅性,可以保证反演结果稳定,防止在反射率模型中引入极值,相比LSRTM,RLSRTM对低信噪比炮记录具有更好的适应性。  相似文献   

12.
速度模型精度问题已经成为制约逆时偏移实际应用效果的瓶颈,尤其是在复杂构造区,受制于目前积分法偏移速度分析固有的多路径问题缺陷,得到的成像道集质量和偏移速度模型精度往往难以满足逆时偏移的成像要求。基于此,开展逆时偏移角道集构建及速度分析方法的研究。首先,开展了波前矢量逆时偏移角度域共成像点道集构建方法的研究,该方法物理意义明确,计算效率较高。与传统偏移距域及炮域成像道集相比,逆时偏移角道集能够有效解决多路径问题,减少偏移假象,提高道集成像质量;其次,推导了新的纵波角度域速度更新公式,并且实现了逆时偏移角度域速度分析方法,模型数据的数值实验结果表明了该方法的正确性和有效性。  相似文献   

13.
本文从逆时偏移成像原理出发,利用高阶交错网格有限差分法求解波动方程实现正、反向波场外推。对不同接收方向、不同排列长度及不同道间距所接收的地震数据做反向外推后与正向波场进行对比,分析正、反向波场存在差异的原因,进一步分析不同方向接收的地震数据逆时偏移假象的成因。通过对模型数据结果的分析认为:在逆时偏移过程中由于接收数据的不完整使得反向外推过程中产生新的波场,从而在偏移剖面中形成假象,这类假象可通过多炮叠加来消除;排列长度对逆时偏移成像的影响远大于道间距。  相似文献   

14.
最小平方逆时偏移真振幅成像   总被引:3,自引:0,他引:3  
针对常规逆时偏移算法具有较强的低频噪声、对观测系统要求较高、较难进行透射损失补偿等问题,本文在构建线性化波动方程算子(反偏移算子)的基础上,详细推导了最小平方逆时偏移迭代算法,在反演的理论框架下解决了上述问题的影响,实现了真振幅成像。通过简单多层介质模型及复杂Marmousi模型试算,验证了最小平方逆时偏移在真振幅成像方面的优势。实验结果表明,此法不仅具有更高的成像分辨率,而且还能有效地压制成像噪声。  相似文献   

15.
高斯束偏移不仅具有接近波动方程偏移的精度,而且具有Kirchhoff偏移灵活、高效的特点。然而当实际地震采集数据中含有较强噪声时,易产生偏移假象而影响成像质量。为此,在传统高斯束偏移的基础上,根据有效信号和干扰信号在τ-p域中的相干性差异,发展了一种基于相似系数阈值滤波的数据驱动控制束偏移方法。采用数据驱动策略,在高斯束偏移成像过程中,先计算τ-p道集的相似系数,再通过设定相似系数阈值控制干扰信号,从而降低偏移剖面中的随机噪声;控制束偏移可以直接提取角度域共成像点道集,无需复杂的角度映射变换且具有更高信噪比。模型测试及实际资料处理结果表明:对于低信噪比数据,控制束偏移剖面的信噪比明显高于常规高斯束偏移,但会损失相对振幅的可靠性;尽管控制束偏移在τ-p道集的滤波过程增加了一定的计算量,但总体与常规高斯束偏移方法的计算效率相当;相似系数阈值参数选取十分关键,阈值较小时偏移噪声较强,但过大阈值也可能压制部分有效信息或产生偏移假象,选取合适的阈值参数才能得到较理想的偏移剖面。  相似文献   

16.
最小二乘偏移是在线性反演理论下求解模型空间的精确解,相对于常规偏移具有更高成像分辨率、保幅性,且可减少成像假象。经典最小二乘偏移以散射波线性化表达为基础,成像实质是估计介质的散射强度。由于地下实际地层以层状介质为主,反射成像是实际应用中最小二乘偏移技术的目标。文中重点讨论散射理论与反射理论两种线性化表达方法的不同,根据实际应用中偏移成像的需求,选择忽略角度信息的反射理论线性化表达反偏移方法,建立了一套估计平均反射系数的最小二乘逆时偏移流程。Sigsbee2a模型验证了最小二乘逆时偏移方法的成像效果;实际三维探区应用结果表明,与常规逆时偏移方法相比,该方法“串珠”成像收敛效果更好,对深层大断裂、层间小断层的刻画更清晰。  相似文献   

17.
从理论上来说,逆时偏移能够对多次波进行成像,然而在实际生产中多次波还是被当作噪声从地震记录中衰减掉。为此,通过分析多次波在逆时偏移中的外推过程,提出将逆时偏移成像条件分为三部分:1真实构造处的反射成像;2非构造处低频噪声;3构造假象。应用三个简单模型的试算验证了逆时偏移可以对层间多次波成像,也可以对地表相关多次波成像,但在实际地震资料处理中,为防止多次波产生偏移假象,需要先衰减多次波再进行逆时偏移。  相似文献   

18.
在前人研究的基础上,首先分析了逆时偏移(RTM)中低频噪声的产生原因,通过波场数据得到的反射角信息构建逆散射成像条件,并与最小二乘逆时偏移(LSRTM)结合,发展了一种基于角度滤波成像的最小二乘逆时偏移方法(ALSRTM),从波动方程能量守恒方面分析了ALSRTM的可行性和保幅性。在实现算法的基础上,对SEG/EAGE二维盐丘模型的稀疏采集地震数据的成像结果表明:ALSRTM可彻底压制浅层构造的低频噪声,有效消除震源效应,在浅、中、深层均具有更好的保幅性。另外,相比常规LSRTM,ALSRTM对含有随机噪声的观测数据和含误差速度模型的适应性更强。  相似文献   

19.
受采集技术、现场环境及经济成本等因素的影响,地震勘探中采集的原始数据往往存在缺炮或缺道等现象,这种数据的不完整性对后续数据处理和成像会造成不良影响,故必须重建此类缺失数据。为此,提出基于迭代最小化稀疏学习(Sparse Learning via Iterative Minimization,SLIM)的方法,主要利用三维地震数据频率切片的二维谐波结构特性,对三维随机缺失地震数据进行重建。即先对三维地震数据沿时间轴方向做傅里叶变换,再利用循环最小化算法(Cyclic Minimization,CM)对频率切片的二维谐波谱进行迭代求解,最后对谱估计做傅里叶逆变换而重构缺失数据。此外,采用共轭梯度最小二乘法实现数据重建过程中的求逆运算,以缩短数据重建时间。试验结果表明:所采用的基于频率切片的SLIM方法对合成和实际三维地震数据均取得了较好的重建效果;该方法的重建性能优于基于频率切片的Hankel矩阵降秩的多道奇异谱分析方法(Multi-channel Singular Spectrum Analysis,MSSA)。  相似文献   

20.
在简要回顾地震成像技术发展史的基础上,按照介质参数由少到多的顺序,分别对仅需纵波速度场的常规声波偏移,需纵、横波速度场的弹性波偏移,需纵、横波速度场和三个各向异性参数的各向异性偏移,以及除弹性参数场之外还增加黏滞性参数场的黏弹性波偏移等四类偏移方法及其相关的速度建模技术和计算机硬件技术进行了梳理,进而总结地震成像技术在构造解释、物性反演、振幅属性提取、井地联合属性分析以及采集参数设计等方面的应用.本文展望, 随着大数据时代和"云"时代的到来,地震成像将向基于弹性介质、各向异性介质、黏弹性介质的叠前深度偏移方向发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号