首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rh/P催化体系中端辛烯氢甲酰化反应的研究   总被引:5,自引:0,他引:5  
从铑膦络合物前体、配体和反应条件等 3个方面考察了端辛烯氢甲酰化反应的性质和规律。发现在 5MPa ,140℃ ,以Ph3 PO为配体的实验条件下 ,铑膦络合物前体的催化活性顺序为 :Rh(CO) (PPh3 ) (acac) >[Rh(CH3 COO) 2 ]2 >Rh6(CO) 16。反应温度、压力和膦铑比对端烯烃的氢甲酰化反应有重要影响。反应压力为 8MPa下端辛烯的最佳反应温度为 16 0℃ ;3~ 10MPa内 ,压力对反应起正向影响 ;对于一定催化剂前体和配体组成的催化体系存在在最佳膦铑比。采用端辛烯和端癸烯为底物 ,在Ph2 P(CH2 ) 4PPh2 ,Ph3 P ,(C8H17) 3 PO ,Bu3 PO ,Ph3 PO和Ph3 PS等 6种配体的作用下进行氢甲酰化反应实验 ,发现烯烃与配体之间存在一定的匹配关系。本实验条件下 ,端辛烯最佳适用配体是Ph3 PO ,端癸烯为Bu3 PO。  相似文献   

2.
吕东梅  杨玉川  蒋景阳  金子林 《石油化工》2004,33(Z1):1563-1564
合成了新的具有"浊点"特性的温控配体CH3(OCH2CH2)nPPh2(相对分子质量为918)(I),研究了该配体与铑的配合物在水/有机两相1-辛烯氢甲酰化中的催化性能.结果表明,由Rh(CO)2(acac)与(I)原位生成的水溶性配合物对1-辛烯氢甲酰化有很好的催化活性,在温度100℃、压力5.0MPa(H2/CO=1/1)、1-辛烯/Rh摩尔比为1000、P/Rh摩尔比为13的反应条件下,反应6 h,1-辛烯转化率和壬醛收率均达95%以上,水相催化剂直接循环使用4次,催化剂性能基本保持不变.  相似文献   

3.
在 [Rh(CH3COO) 2 ]2 Ph3PO催化体系中 ,对混合C8烯烃氢甲酰化反应条件的影响进行了研究。在本实验条件下 ,较适宜的反应温度为 1 2 0 -1 40℃ ,iso C9醛的收率随着反应压力和反应时间的增加而增大。在混合辛烯 30ml、催化剂浓度为 1 2 9× 1 0 -6 、n(P) /n(Rh) =46、反应温度为 1 2 0℃、反应压力为 1 0 0MPa、反应 1 5 0min的条件下 ,iso C9醛的收率达到 85 %。此外 ,对催化体系中添加水量的影响进行了考察 ,添加适量的水有利于醛的生成。  相似文献   

4.
合成了两种水溶性膦配体三(4-甲氧基-3-磺酸钠苯基)膦(简称4-MOTPPTS)和三(2-甲氧基-3-磺酸钠苯基)膦(简称2-MOTPPTS).在水/有机两相体系中,以RhCl(CO)(TPPTS)2[TPPTSP(m-C6H4SO3Na)3]为催化剂前体,考察了4-MOTPPTS和2-MOTPPTS作为配体时,膦/铑摩尔比、反应温度和压力变化对1-十二烯氢甲酰化反应催化性能的影响.结果表明,甲氧基的存在使催化剂对烯烃氢甲酰化反应的催化活性下降,生成醛的选择性降低.  相似文献   

5.
采用吡唑基配体、铬化合物和甲基铝氧烷(MAO)构建的三元催化体系催化乙烯齐聚反应,考察了反应温度、反应压力、n(Al)/n(Cr)、溶剂种类等条件对该催化体系催化乙烯齐聚性能的影响。结果表明,3,5-二甲基吡唑-CrCl3(THF)3-MAO三元催化体系催化乙烯齐聚表现出良好的催化活性和线性α-烯烃的选择性,催化活性可达4.19×106 g/(mol Cr?h),线性α-烯烃的选择性达到97.89 %,其中1-C6=~1-C12=线性α-烯烃的选择性达到66.28 %。  相似文献   

6.
 合成新型的PNP型膦胺配体,并采用核磁共振氢谱、质谱、元素分析对其结构和组成进行了表征。将不同配体、主催化剂乙酰丙酮铬和助催化剂MAO作为催化体系催化乙烯齐聚反应,考察配体类型、反应温度、反应压力等因素对催化活性和辛烯-1选择性的影响。结果表明,PNP型膦胺配体N上取代基的性质和工艺反应条件对该催化体系催化乙烯齐聚反应的催化活性和齐聚产物α-烯烃的分布有很大影响。催化活性最高可以达到5.6×106g/(molCr·h),辛烯-1的选择性达到64.6%。  相似文献   

7.
合成并表征了三种新型双吡啶Schiff碱配体(Ligand1、Ligand2、Ligand3)。以甲苯为反应溶剂,研究了配体L1、L2、L3分别与CrCl_3(THF)_3和助催化剂甲基铝氧烷(MAO)原位合成催化剂后催化乙烯齐聚的性能。实验结果表明,随着反应温度和n(Al)/n(Cr)的升高,催化反应体系的活性呈先增大后减小的趋势;配体的结构对催化体系的反应活性有显著影响,N取代基上引入S原子(L2),会导致催化活性降低。在反应温度为80℃,n(Al)/n(Cr)=800,乙烯聚合压力为1.0 MPa的条件下,L3/CrCl_3(THF)_3/MAO催化乙烯齐聚的反应活性高达1.22×10~6 g/(mol·h),产物为高纯线性α-烯烃,且没有聚乙烯生成。  相似文献   

8.
鉴于混合C8 烯烃水溶性差 ,在pH =2± 0 .2时考察了反应温度、膦 /铑比、CO/H2 分压比、混合气总压等因素对水溶性铑 /膦配合物Rh(CO) (TPPTS) 2 催化剂催化混合C8烯烃氢甲酰化反应活性的影响 ,并综合材质价格、异辛烯的转化率和选择性等多方面的因素 ,选定最佳反应条件为 :反应时间 5h ,反应温度 1 0 5~ 1 2 0℃ ,反应总压 5MPa ,其中CO/H2 =2 /3。该反应条件下成醛转化率达 5 4% ,选择性为 96 %。  相似文献   

9.
烯烃氢甲酰化是合成高碳醛的重要途经。为了合成高效的负载型催化剂,研究了在UiO-66中限域不同P含量(质量分数,下同)负载的Rh催化剂对1-己烯氢甲酰化反应性能的影响。通过在间歇反应釜评价装置测试催化剂的催化性能并结合XRD、ICP、XPS和TG等表征方法,探讨了不同P含量对1-己烯氢甲酰化反应性能的影响。结果表明,当反应压力为5.0 MPa、反应温度为80℃时,0.1%Rh/3.0%PPh3@UiO-66催化剂具有最大的催化活性(99.6%)和正庚醛选择性(64.5%),且催化剂循环3次没有明显失活,循环3次后1-己烯的转化率为92.3%,庚醛的选择性为78.4%。相比较而言,非限域的PPh3和Rh共浸渍到UiO-66制备的Rh-PPh3/UiO-66催化剂,进行第2次循环时催化活性即出现大幅下降,1-己烯的转化率从99.5%减小到29.3%,异构己烯的选择性增大至72.4%。  相似文献   

10.
以1-癸烯、1-辛烯、1-十二烯及其混合烯烃为原料,采用Ziegler-Natta催化剂,通过两段反应温度结合模式制备高黏度聚α-烯烃(PAO)合成油,并研究了原料种类、反应温度、反应时间及催化剂用量对PAO收率和性能的影响。实验结果表明,最佳工艺条件为混合烯烃(1-辛烯与1-癸烯体积比为1)为原料,第一段于20℃反应8 h,第二段于80℃反应2 h,催化剂用量4%(w),n(Al):n(Ti)=3.5。此工艺条件下,PAO收率为91.01%,运动黏度(100℃)为42.03 mm~2/s,黏度指数为157,闪点为288℃,倾点为-44℃。在反应温度230℃、反应压力4.0 MPa、体积空速0.2 h~(-1)、氢油体积比300的条件下加氢精制,PAO加氢产品的运动黏度(100℃)为41.27 mm~2/s,黏度指数为154,闪点为285℃,倾点为-40℃,产品性能优于市售的PAO-40。  相似文献   

11.
以介孔γ-Al2O3为载体,采用两步气相法合成了固载化AlCl3催化剂,分别考察了其在苯与纯1-辛烯、1-癸烯、1-十二烯、工业混合烯烃烷基化反应中的活性和稳定性。结果表明:烯烃碳链长度影响催化剂的稳定性,碳链越长,反应生成单烷基苯的选择性越高,稳定性越好。在悬浮床连续式反应器中,以工业混合烯烃为原料、n(苯与烷烃)∶n(烯烃)为20∶1、反应压力1.0 MPa、反应温度120℃、进料量10 mL/h的反应条件下,该催化剂选择性、稳定性较好,在保持烯烃转化率大于90%、单烷基苯选择性为100%、2-苯基异构体的选择性约为40%的情况下,可以稳定运行1000 h。工业混合原料中含有二烯烃、芳烃等杂质是导致催化剂失活的主要原因。  相似文献   

12.
 采用还原胺化法合成了新型膦氮配体铑配合物,并采用FT-IR和NMR (1H, 13C, 31P)进行结构表征。考察了含水量对膦氮配体铑配合物催化己烯-1氢甲酰化反应的影响,以及各种酸处理对催化剂循环使用的效果。结果表明,适量的水可提高膦氮配体铑配合物对己烯-1氢甲酰化反应的催化活性和选择性。反应后的膦氮配体铑配合物催化剂用适当有机酸萃取进入水相与产物分离,然后改变pH值使其从水相再进入新鲜有机溶剂中,实现催化剂在催化高碳烯烃氢甲酰化反应中的循环使用。  相似文献   

13.
Salen-Mn配合物催化空气环氧化烯烃反应   总被引:9,自引:4,他引:5  
研究了Salen-Mn配合物催化空气环氧化苯乙烯的反应。考察了溶剂用量、反应温度、时间、催化剂用量以及异丁醛用量对苯乙烯环氧化反应的影响。当反应温度35℃、反应时间8 h、n(异丁醛)/n(苯乙烯)2.5、催化剂的摩尔分数0.35%时,苯乙烯的转化率达到98.3%,环氧苯乙烷的选择性高达85.9%。实验发现,4种烯烃环氧化反应速率由快到慢的顺序为苯乙烯>环已烯>1-辛烯>1-十二烯。  相似文献   

14.
合成了2-(二苯基膦基)乙基甲基硫醚(L1)、2-(二苯基膦基)乙基甲基醚(L2)、2-(二苯基膦基)-N,N-二甲基乙胺(L3)三种PX型配体,将配体与CrCl_3(THF)3络合,以甲基铝氧烷(MAO)为助催化剂组成PX/Cr(Ⅲ)/MAO催化体系,利用~1HNMR,~(13)C NMR,~(31)P NMR,GC,GPC等方法对配体结构和聚合产物进行了表征,研究了催化体系催化乙烯齐聚的性能。实验结果表明,PX/Cr(Ⅲ)/MAO体系的催化活性随反应温度的升高均呈先升高后降低的趋势,随反应压力的升高而逐渐升高。L1/Cr(Ⅲ)/MAO体系的催化活性低于L2/Cr(Ⅲ)/MAO和L3/Cr(Ⅲ)/MAO体系。3种体系所得聚乙烯的相对分子质量均较高且分布较宽。以甲苯为溶剂时催化活性较高,以环己烷为溶剂时产物中的聚乙烯含量较高。  相似文献   

15.
合成了2-(二苯基膦基)乙基甲基硫醚(L1)、2-(二苯基膦基)乙基甲基醚(L2)、2-(二苯基膦基)-N,N-二甲基乙胺(L3)三种PX型配体,将配体与CrCl_3(THF)3络合,以甲基铝氧烷(MAO)为助催化剂组成PX/Cr(Ⅲ)/MAO催化体系,利用~1HNMR,^(13)C NMR,^(31)P NMR,GC,GPC等方法对配体结构和聚合产物进行了表征,研究了催化体系催化乙烯齐聚的性能。实验结果表明,PX/Cr(Ⅲ)/MAO体系的催化活性随反应温度的升高均呈先升高后降低的趋势,随反应压力的升高而逐渐升高。L1/Cr(Ⅲ)/MAO体系的催化活性低于L2/Cr(Ⅲ)/MAO和L3/Cr(Ⅲ)/MAO体系。3种体系所得聚乙烯的相对分子质量均较高且分布较宽。以甲苯为溶剂时催化活性较高,以环己烷为溶剂时产物中的聚乙烯含量较高。  相似文献   

16.
以ZSM-5分子筛(n(Si)/n(Al)=360)为催化剂,在固定床反应器上考察了反应温度、水醇比、原料空速和反应时间对甲醇制低碳烯烃(MTO)各产物选择性的影响。结果表明:随反应时间增加,丙烯的选择性逐渐增大,乙烯的选择性先增大后减小,所有产物的选择性均在6.5h后趋于稳定;随反应温度升高,低碳烯烃的选择性先增大后减小;原料中适量掺杂水对反应有利,n(水)/n(醇)为2时,低碳烯烃的选择性最高;空速增加,低碳烯烃的选择性逐渐下降,但空速过低催化剂易积炭失活。最佳反应条件确定为:430℃,LHSV=2.2h-1,n(水)/n(醇)=2,此时乙烯+丙烯的选择性达69.36%,其中丙烯的选择性为53.54%。  相似文献   

17.
设计了乙烯选择性齐聚连续化反应装置,将硅胺基桥联双膦型配体铬配合物(PNSiP/CrCl3(THF)3)、改性甲基铝氧烷(MMAO)组成催化体系,考察了其催化乙烯选择性齐聚连续化反应性能,并对该反应动力学进行研究。结果表明:当反应温度为60 ℃、乙烯压力为5.0 MPa、氢气分压为0.2 MPa、连续化反应20 h时,该催化体系的催化活性可达46.13×106 g/(mol Cr·h);产物中1-己烯和1-辛烯的总选择性最高达到88.52%,固体产物聚乙烯(PE)质量分数为0.09%。PNSiP/Cr(Ⅲ)/MMAO催化体系在乙烯选择性齐聚连续化反应中具有催化活性高、副产物(甲基环戊烷+亚甲基环戊烷)少、固体低聚物少、可实现长周期运行的优点。对PNSiP/Cr(Ⅲ)/MMAO催化乙烯选择性齐聚连续化反应动力学方程进行拟合计算,得到该反应对主催化剂浓度的反应级数为1.32、对乙烯压力的反应级数为1.92;当主催化剂摩尔浓度为7.09 μmol/L、反应温度为40~60 ℃、压力为5.0 MPa时,该反应的表观活化能为109.7 kJ/mol。  相似文献   

18.
工业上常用的氢甲酰化催化剂为金属钴(Co)或铑(Rh)的配合物催化剂。为了提高催化剂的活性,同时降低催化剂成本,基于Co、Rh的双金属催化剂得到了广泛研究。综述了Co、Rh基双金属催化剂(均相、多相催化剂)的制备及其催化氢甲酰化反应的研究进展。分析表明,相比于单金属催化剂,双金属催化剂的催化活性有不同程度的提高;Co系双金属催化剂中,Co-Rh组合活性最好,适合长短链烯烃的催化,更倾向于负载型催化剂的发展;Rh系双金属催化剂中,Rh-Fe体系活性与Rh-Rh体系相当,但其成本低,适合高碳烯烃的催化。  相似文献   

19.
研究了1-辛烯、环辛烯等多种烯烃的环氧化反应,考察了反应温度、反应时间、催化体系循环使用次数等因素对环氧化反应的影响。结果表明,在离子液体1-甲基-3-丙酸咪唑硫酸氢盐中,以H2O2质量分数为30%的双氧水溶液为氧化剂,以[[(phens)2(H2O)FeⅢ]2(μ-O)](ClO4)4为催化剂,在反应温度为5℃,反应时间为15 min的最佳工艺条件下,1-辛烯转化率可达99%;催化活性随催化体系循环使用次数的增加而逐渐下降。  相似文献   

20.
反应条件对钴催化混合辛烯氢甲酰化反应的影响   总被引:1,自引:1,他引:0  
魏岚  贺德华  董国利 《石油化工》2004,33(6):512-515
采用醋酸钴为催化剂前体研究了钴催化剂对混合辛烯氢甲酰化制备异壬醛的催化性能,并考察了溶剂及反应条件的影响。实验结果表明,选用甲醇作溶剂,促进了钴催化剂在底物烯烃中的完全溶解,从而有效地提高了原料转化率和异壬醛的收率;反应温度、反应压力、催化剂用量和反应时间等参数对产物异壬醛的收率均有影响,且存在一个最佳范围,即在反应温度160℃、压力8MPa、催化剂用量(Co与烯烃的摩尔比)为0.01、反应时间5h时,可以获得混合辛烯转化率83%、醛收率55.4%的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号