首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
通过在烃源岩中加入硫酸盐和不加硫酸盐的热模拟实验,对比分析了实验中气体组分产率的变化特征,对TSR蚀变天然气的变化规律进行了探讨。结果表明:TSR反应使样品的总产气率增大,增大的部分主要为非烃气体,说明当孔隙体积和温度不变的情况下,气藏经过TSR反应改造后,容易形成高压气藏;同时,甲烷气体的产率降低,但由于在实验条件下,有机质可能受高温裂解和氧化还原2种反应共同作用,因此不能确定甲烷产率降低的原因是TSR反应蚀变甲烷引起的,但是可以肯定TSR反应对甲烷产率有较大影响;TSR反应对乙烷气体产率的影响可能和有机质类型有关。发生TSR反应后,Ⅲ型有机质的乙烷产率增加,Ⅰ型和Ⅱ型有机质的乙烷产率减少,这可能是由于Ⅰ型和Ⅱ型有机质比Ⅲ型有机质更容易发生TSR反应,其相对裂解生成乙烷的能力就弱一些。实验中硫化氢的含量低于二氧化碳的含量,而地质实际天然气中硫化氢的含量普遍高于二氧化碳的含量。二氧化碳与钙等金属离子结合形成碳酸氢盐,可能是二氧化碳含量降低的主要原因。二氧化碳分异过程可能是使储层物性明显改善的主要原因。  相似文献   

2.
H_2S作为有毒的酸性气体,在稠油注汽热采过程中主要由硫酸盐热化学还原(TSR)产生。通过实验探究CaSO_4、Na_2SO_4、MgSO_4和Al_2(SO_4)_34种不同硫酸盐发生TSR反应生成H_2S的作用机制及影响。实验结果表明:(1)水是产生TSR反应的必要条件,固态硫酸盐并不能引发TSR反应;(2)硫酸盐的溶解度决定TSR反应速率,溶解度越高,反应速率越快;(3)水溶性硫酸盐的金属阳离子电荷数决定TSR反应的难易程度,电荷数越多,反应越容易进行。  相似文献   

3.
硫酸盐热化学还原反应对烃类的蚀变作用   总被引:31,自引:9,他引:31  
硫酸盐热化学还原反应(TSR)是指硫酸盐与烃类作用,将硫酸盐矿物还原生成H2S等酸性气体的过程,是高含H2S天然气形成的重要机制。由于硫酸盐热化学还原反应是热动力驱动下烃类和硫酸盐之间的化学反应,因此伴随着烃类的氧化蚀变,烃类气体的组分和碳同位素则会发生相应的变化。对四川盆地东北部下三叠统飞仙关组和渤海湾盆地古生界高含硫化氢气藏中烃类气体组分和碳同位素的研究发现,在硫酸盐热化学还原反应消耗烃类的过程中,重烃类优先参与了该反应,从而导致天然气的干燥系数增大。同时,在硫酸盐热化学还原反应过程中,12C—12C键优先破裂,12C更多地参与了该反应,而13C则更多地保留在残留的烃类中,使反应后残留的烃类中相对富集13C,烃类气体碳同位素值增重2.0‰~4.0‰,且重烃类碳同位素的增重幅度大于甲烷。  相似文献   

4.
由于反应途径或机制不同于裂解反应,硫酸盐热化学还原作用(TSR)很可能会改变油藏中原油的热稳定性和裂解气产量。为了阐明TSR作用对原油裂解气生成的影响,利用黄金管热模拟装置开展了一系列不同硫酸盐和原油的升温热解实验。非烃气体,包括H2S的大量生成表明,石膏和硫酸镁的加入引发了原油的TSR反应,其中,石膏参与的TSR作用对烃类气体的产量和生成活化能无明显影响;相对而言,硫酸镁参与的TSR反应引起了最终甲烷产量约13.1% 的降低和大分子气态烃(C2+)稳定性的明显降低;氯化镁的加入导致了硫酸镁体系中H2S产量进一步的增加和烃类气体产量进一步的降低。可以证实,在硫酸镁热解体系中,C2+与活性结构HSO4-发生了氧化还原反应,这也是导致烃类气体产量降低的重要原因。因此,TSR作用对裂解气生成的影响很大程度上受控于地层水中的硫酸盐类型和活性结构的浓度。  相似文献   

5.
稠油注汽热采过程中通常伴随着H_2S的产生,针对此现象,以稠油非含硫模型化合物正十六烷及4种金属盐(MgSO_4、Al_2(SO_4)_3、Na_2SO_4及CaSO_4)为研究对象,开展热模拟实验,对稠油热采过程中硫酸盐热化学还原(TSR)生成H_2S机理进行研究。实验表明:反应产物以烃类(C_1~C_5)、无机气体(H_2、CO_2、H_2S)、MgO以及噻吩类、硫醇和硫醚类物质为主;4种金属盐TSR生成H_2S量顺序为:Al_2(SO_4)_3CaSO_4MgSO_4Na_2SO_4;生成CO_2量顺序为:Al_2(SO_4)_3Na_2SO_4MgSO_4CaSO_4。原因在于金属阳离子电荷数越大自催化作用越强,产生H_2S越多;不同硫酸盐体系反应路径不同。推导了正十六烷与MgSO_4的TSR反应过程:包括质子化作用、热解反应、硫代硫酸盐向有机硫化物转化、H_2S自催化作用及硫化物热解和水解等反应,其中自催化作用是生成H_2S的主要途径。最后,通过计算得到正十六烷与MgSO_4的TSR反应活化能为61.498 kJ/mol。  相似文献   

6.
《石油化工》2015,44(4):409
对醋酸甲酯加氢制乙醇反应体系进行了热力学分析。计算了各独立反应的标准摩尔反应吉布斯自由能,分析了温度、压力、氢气与醋酸甲酯的摩尔比(氢酯比)对反应体系平衡组成的影响以及对醋酸甲酯转化率和乙醇选择性的影响。计算和分析结果表明,各独立反应在423~723 K内的标准摩尔吉布斯自由能均大于0,没有适宜的压力和氢酯比反应将很难进行;较低的温度有利于乙醇的生成和抑制副产物的产生,适宜的温度为423~550 K;在压力低于2.0 MPa时,醋酸甲酯转化率和乙醇选择性均随压力的升高而快速增加,适宜的压力为2.0~3.0 MPa;在氢酯比低于10时,醋酸甲酯转化率和乙醇选择性均随氢酯比的增大而快速增加,适宜的氢酯比为10~20。  相似文献   

7.
《石油化工》2016,45(1):69
采用Gibbs自由能最小化法对乙酸甲酯(MC)水蒸气重整制合成气反应进行热化学平衡计算,考察了温度、水酯比(n(H_2O)∶n(MC))和压力等因素对MC水蒸气重整制合成气反应产物的影响。实验结果表明,随温度升高,合成气含量明显增大,氢碳比(n(H_2)∶n(CO))、CH_4和CO_2含量则减小,在800~1 000℃时,合成气含量达最大,氢碳比较稳定,有利于合成气的制备;在温度大于800℃时,随水酯比的增加,合成气含量先增大后减小,在水酯比为4时较为适宜;随压力增加,合成气含量减小,CH_4和CO_2含量增加,低压有利于合成气的制备。在800~1 000℃、水酯比为4、常压条件下,MC水蒸气重整制合成气含量可达86%(φ)。  相似文献   

8.
1. Introduction The association of sulfate with hydrocarbon isthermodynamically unstable in deep sulfate-richcarbonate reservoirs. Thermochemical sulfate reduction(TSR) by hydrocarbons takes place in geologicaldeposits, which can account for the accumulation ofH2S in deep sour gas reservoirs (Claypool, et al., 1989;Machel, 1987, 1998; Tridinger, et al., 1985; Wang, et al.,2002; Worden, et al., 1996). Wherever it is present ingas reservoirs, H2S causes natural gas destr…  相似文献   

9.
甲烷和硫酸钙反应体系热模拟实验及碳同位素分馏研究   总被引:1,自引:0,他引:1  
Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H,S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki(kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.  相似文献   

10.
由收益■、最大收益■和收益■损组成的收益■效率能够准确体现设备与装置的热力学完善度,并能避免人为因素对■效率分析计算的影响.而确定收益■效率的关健就在于如何确定设备与装置的最大收益■.本文针对各种常见设备与装置的具体情况,阐述了确定最大收益■的原则与方法,给出了常见热工设备与装置的收益■效率表达式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号