首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
气田采气管线天然气水合物生成条件预测   总被引:1,自引:1,他引:0  
梁裕如  张书勤 《天然气与石油》2011,29(3):11-13,20,83,84
延长气田地面集气工程采用高压集气工艺,天然气在井口未经任何处理,经高压采气管线输送至集气站内进行集中处理。在一定温度和压力条件下,极易在采气管线中形成天然气水合物堵塞管道,影响采气管线的正常运行,因此,对采气管线水合物的生成条件进行预测是非常必要的。结合天然气管道动力学与天然气水合物统计热力学模型,利用VB编制了计算软件,以延长气田采气管线为例,对管线中天然气水合物的生成条件进行预测和分析,从计算结果可以看出,该水合物生成条件的计算方法在实际工程应用中具有一定的实用价值。  相似文献   

2.
针对苏里格气田冬季因气温较低而出现的气井井下油套管和地面输气管线容易形成水合物的问题,从天然气水合物的物化性质出发,对生成水合物的成因进行分析,其成因条件主要有热力学条件和动力学条件两个方面,水分和烃类物质是形成水合物的先决条件。分析了气井井筒和输气管线防治水合物的措施,井下节流器的应用对井筒水合物的形成有较好的防治效果,对天然气进行脱水使天然气不满足形成水合物的水分这个先决条件,提高管道的工况条件主要是提高管道内天然气流动温度、降低管道压力、添加抑制剂,可防止管道中水合物的形成。提出了水合物防治技术的研究方向。  相似文献   

3.
介绍了天然气管线中水合物生成条件、以及水合物的生成对管线正常输送和安全运行的影响;提出了天然气管线水合物生成影响因素比较框图,对不同输送工况下管道中水合物的生成进行了分析,得出天然气管线中水合物生成影响因素有输量、起点压力、起点温度和管径,其中输量影响最大,起点压力影响最小,适当增大输量、提高起点温度、降低起点压力和减小管径,可以缩小水合物生成范围甚至避免水合物生成。  相似文献   

4.
在高压、低温生产情况下,天然气生产系统中容易形成水合物,产生管线节流、堵塞等现象。实际生产中,天然气水合物堵塞管线过程可分为形成、环向增长、脱落、堵塞等四个阶段。水合物薄膜在管道内径向、沿管线方向的增长存在一定的规律。充分运用水合物堵塞管道机理、水合物生长机理结合水合物防治方法,得出防止水合物堵塞管道的最佳时机,以期应用于实际生产中,减少水合物堵塞管道产生的生产影响。  相似文献   

5.
海底天然气管线由于运行条件、环境温度、输送工艺的特殊性 ,极易形成水合物。凝析天然气在海底管线中的输送过程属于两相流动范畴 ,沿线运行参数、水汽含量的计算方法与一般的天然气管线不同 ,文章根据平湖 -上海和锦州 2 0 - 2两条凝析气海底管线的实际生产数据 ,优选出适合海底凝析气管线工艺计算的两相流水力学和热力学模型 ,结合水合物生成条件和饱和含水量的统计热力学理论计算方法 ,能有效地预测海底管线水合物可能形成区域 ,对防止水合物形成 ,确保管线安全运行具有重要指导意义  相似文献   

6.
在天然气管线中 ,水合物会堵塞管道 ,损坏设备。分析了天然气管道内水合物形成过程和预测方法 ,编制了天然气管道水合物预测软件。介绍了天然气管道全线运行参数的确定 (包含稳态和动态 ) ,天然气管道全线所允许的最大含水量的确定和天然气管道全线实际含水量的计算方法。通过比较天然气管道全线所允许的最大含水量和实际含水量 ,来判断全线是否有水合物生成  相似文献   

7.
在输气管道内天然气和水接触可形成天然气水合物,从而导致管道冻堵,影响海上天然气管道输送安全。结合渤海某海底输气管道发生水合物冻堵事件,首先简要介绍了天然气水合物形成的主要影响因素,而后介绍了该海底天然气管道的运行参数、管道中天然气水合物形成条件和原因、管道冻堵情况及解堵过程,最后分析总结了管道在发生水合物堵塞后,初期压差升高阶段和完全冻堵阶段的解堵处置方法,并提出预防海底输气管道发生水合物冻堵的若干措施或建议。  相似文献   

8.
管道天然气水合物的风险管理抑制策略   总被引:2,自引:1,他引:1  
随着深海油气资源的逐渐开发,传统天然气水合物防治方法的局限性越来越明显,低剂量天然气水合物抑制剂(LDHI)的使用逐渐受到关注和重视,管道天然气水合物的抑制策略也正在发生转变。为此,介绍了国内外天然气水合物抑制技术的最新进展,分析了目前采用热力学抑制剂完全抑制天然气水合物策略的局限性,结合笔者自己的研究成果,整合提出了管道天然气水合物的风险管理对策,即允许管道中形成天然气水合物,通过对天然气水合物流体的控制来实现油气管道的安全畅通运行。分析比较后指出:风险管理抑制策略必将成为管道天然气水合物的主要抑制策略,将有可能为石油天然气工业带来巨大的经济效益。  相似文献   

9.
天然气在高压低温的条件下运输,输送管道很容易由于水合物的形成导致堵塞问题的发生,输送管线越长,发生问题后严重性就越大。因此必须做好运输管道内抑制水合物生成的工作,进而确保输送管道的持续有效工作。本文主要介绍了管道内水合物生成的条件以及当前常用的抑制水合物生成的方法,并分析了这些传统方法存在的问题和弊端,进而引出了新的抑制水合物生成的方法,以及水合物抑制剂的工作原理及简介。  相似文献   

10.
天然气水合物是天然气与水在一定的温度和压力下形成的一种冰状笼形化合物。在气井生产过程中.一旦压力、温度条件满足,天然气混合物中的某些气体组分便会与水形成水合物。堵塞油管或井口集输管线。作者通过对气井水合物形成条件的分析.具体介绍了对各种水合物的预防和解堵措施。  相似文献   

11.
在高压、低温环境下,多相混输管线中容易发生水合物堵塞问题。管线越长,问题越大。对海上油气田开发中广泛使用的多相混输管线,必须有效、经济地防止管线中水合物的生成,从而确保混相输送管线的正常运行。章概述了四种传统的解决方法:输送前去除油气中的水;管线加热技术;降压控制技术;使用热力学抑制剂。针对以上传统方法在经济上或技术上的缺点,介绍了添加动态抑制剂和防聚剂两种新型水合物抑制方法,并叙述了添加剂的抑制机理、种类和研究现状。水合物动态抑制剂的工业使用依赖于实验室、小试和现场多相混输管线实验结果的可重复性,以及在不同装置上的可移植性。实验发现,动态抑制剂比热力学抑制剂具有更好的经济性.某些动态抑制剂已经应用于现场油气生产与输送过程。建立可靠的水合物成核、生长和抑制微观机理模型,实验模拟多相混输条件,开发和筛选价格更低廉、性能更优良的动力学抑制剂,是今后研究工作的主要发展方向。  相似文献   

12.
在自然界中,蕴藏着丰富的天然气水合物,水合物的结构有I、Ⅱ和H型。开发的方法有:热力分解法、减压法和注入化学剂等等。多孔介质中水合物的形成条件和管道、井筒中水合物的形成条件有较大的区别,在多孔介质中必须考虑毛细管力的作用,水合物的分解条件主要取决于多孔介质中岩石和流体的特性如润湿角和孔隙尺寸等。文章所推导出在多孔介质中考虑毛细管力的影响后,天然气水合物形成压力和温度与实验数据吻合较好,而没有考虑毛细管力的影响计算出的天然气水合物在给定温度下所得到的水合物的形成压力偏低。  相似文献   

13.
天然气水合物是天然气与水在一定的温度和压力等条件下形成的结晶笼状固态化合物。在油气田开采及集输过程中,由于压力较高,管道内易形成水合物。水合物可导致输气量减少、仪表和分离设备等堵塞,严重影响油气田生产的正常运行。文章概述了天然气水合物形成的条件和目前对水合物防治的物理和化学方法,并提出了针对实际情况选用合适的工艺和选择不同抑制剂的思路。开发环保型和廉价性并适用于各种条件下的动力学抑制剂和防聚剂,是今后的研究方向。  相似文献   

14.
长庆气田主要采用高压集气集中注醇工艺流程,防止气井生产过程中形成的水合物堵塞,但部分气井及集气管线在生产运行过程中暴露出堵塞严重等问题,为此开展井下节流技术的研究和应用具有重要的实际意义。文章介绍了该工艺的基本原理、井下节流器室内模拟试验以及施工参数优化设计,同时结合井下节流工艺技术在长庆气田现场试验资料,分析了该项工艺技术应用对改变水合物形成条件及减少管线堵塞次数等方面取得的效果。  相似文献   

15.
天然气水合物的发现虽已有很长的历史,但一直局限在防止和抑制水合物的生成研究上,水合物具有独特的结晶笼状结构,用水合物作为天然气储运的新方法,具有安全可靠、费用低的优势,因而对它的研究成为当今世界能源开发的热点。将天然气水合物(NGH)技术应用到天然气非管道储运技术中,正在成为其中的焦点之一。介绍了世界天然气水合物储运技术研究的概况、特点、应用方向、以及与其他天然气非管道储运技术的经济比较。  相似文献   

16.
葡北油田天然气重力混相驱注气井井筒内发现有水合物形成,严重影响了注气井的注气效率。基于Pipesim建模对注气井水合物形成管段及影响因素进行了分析,研究了通过提高天然气初始温度和采用水套炉加热井口天然气以预防水合物形成的技术可行性。研究结果表明,目前注气条件下,在距压缩机出口300 ~2 000 m的输气管线及井筒深度小于1 025 m的范围内具备水合物形成的温压条件;随天然气初始温度和注气速度增加,当井口气体温度低于对应水合物形成最高温度时,输气管线形成水合物段缩短,井筒内形成水合物段先增长后缩短,当井口气体温度高于水合物形成最高温度时,输气管线不形成水合物,井筒内形成水合物段缩短;提高天然气初始温度和采用水套炉加热井口天然气能够使注气压力小于40 MPa、注气速度大于5×104 m3/d的注气井不形成水合物,是有效的水合物预防方法。  相似文献   

17.
Temperature, pressure, and composition of gas mixtures in deepwater pipelines promote rapid formation of gas hydrates. To avert this dilemma, it is more significant to find out the temperature and pressure limits in gas hydrates formation of the deepwater pipeline. The objective of this research is to develop an optimization method that finds the optimal temperature and pressure profile for natural gas hydrate formation conditions and an error calculation method to find the realistic approach of the hydrate formation prediction model. A newly developed correlation model is computing the hydrate formation pressure and temperature for a single component of methane (CH4) gas. The proposed developed prediction model is based on the 2 and 15 constant coefficients and holds a wide range of temperature and pressure data about 2.64 to 46°C and 0.051 to 400 MPa for pure water and methane, respectively. The reducing error discrepancies are 1.2871, 0.35012, and 1.9052, which is assessed by GA, PSO, and GWO algorithms, respectively. The results show the newly developed optimization algorithms are in admirable compliance with the experimental data and standards of empirical models. These correlations are providing the capability to predict gas hydrate forming conditions for a wide range of hydrate formation data.  相似文献   

18.
目的解决高含硫气田开发过程中在井筒和管道中形成的天然气水合物造成冰堵的问题。 方法在恒温、恒容条件下,采用耐高压哈氏合金釜研究了高含硫天然气水合物宏观生长速率及气田水矿物离子对其的影响情况,同时,采用直接观察法从俯视角度研究了压力、气田水矿物离子及溶液形态对气液界面高含硫天然气水合物生长过程形貌特征、生长特性及延展规律的影响。 结果气田水中矿物离子的存在可降低水合物的生长速率,同时改变水合物形貌。在气液界面,水合物从成核点以二维拓展模式向四周生长。升高压力对水合物形貌影响较小,但会提高水合物的生长速率。 结论分析认为,矿物离子主要是通过离子化作用来降低水的活性,从而影响水合物的生长过程。研究结果对水合物安全防治和高含硫气田的顺利开发具有理论指导意义。   相似文献   

19.
胡德芬  侯梅  徐立  何敏 《天然气工业》2010,30(10):78-82
高含硫气井因H2S含量较高,其天然气水合物形成温度较高,井筒及地面集输系统在冬季生产过程中极易形成天然气水合物,严重影响安全生产。为此,分析了高含硫气井集输系统发生天然气水合物堵塞的原因,在现有集输系统适应性分析的基础上,结合天然气水合物形成的边界条件,提出了高含硫气井集输系统天然气水合物的防治措施:井筒加注防冻剂或解堵剂;清洗井底脏物和天然气水合物;站场设备采用水套炉和电伴热加热,应用聚氨酯硬质泡沫塑料保温材料进行绝热保温;集输管线加注天然气水合物抑制剂;进行集输系统适应性改造;合理控制计量温度;制订合理的清管周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号