首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
高含硫气田开发过程中H2S含量变化规律   总被引:2,自引:1,他引:1  
对流体相平衡及高温高压下H2S气体在水中溶解度的实验研究表明,在高含硫气田开发过程中,H2S含量增加缘于原始地层水中所溶解的H2S气体在地层压力降低后部分脱附而进入地层气相中。基于H2S气体在水中溶解度实验数据和物质平衡方法,建立了高含硫气田H2S气体含量长期变化规律模型。对H2S含量变化规律进行的敏感性分析结果表明:在高含硫气田开发早期,产出气体中H2S含量增加较为缓慢,在气田进入开发的中后期时,H2S含量增加速度不断加大。同时,地层原始含水饱和度对H2S含量增加的影响较大。在同样条件下,原始含水饱和度高的气藏其H2S含量增加速度更快。  相似文献   

2.
在国内外高含硫气田开发实践过程中,普遍发现随气田开发时间的延长,产出气体中H2S含量不断上升,而产出气体中H2S含量高低与高含硫气田硫磺的储量密切相关。通过流体相平衡理论分析,认为高含硫气田H2S含量上升的原因在于原始条件下地层水中溶解有大量H2S气体,当地层压力下降时,H2S在地层水中溶解度降低导致部分H2S从地层水中逸出进入气相,使得气体中H2S含量不断上升。在此基础上,结合气-液相平衡和物质平衡理论,建立了H2S含量变化理论预测模型,对高含硫气田开发过程中H2S含量变化情况进行理论预测,进而建立了考虑气田开发过程中H2S含量变化的硫磺储量修正模型。研究结果表明,考虑H2S含量变化的修正模型所计算硫磺采出量要明显高于常规方法的计算结果,实例也表明考虑H2S含量变化的硫磺可采储量比未考虑变化规律时要高出16.3%。  相似文献   

3.
基于H2S毒性负荷的山区含硫气井应急计划区的划分方法   总被引:1,自引:0,他引:1  
研究山区含硫气井应急计划区划分方法,为制订其安全生产标准提供科学依据。选择典型山区地形的3口含硫气井,采用大涡模拟方法,模拟了不同H2S释放速率、不同风速和风向、不同井喷点火时间的组合条件下H2S在大气中的扩散浓度场。用积分方法计算了各井H2S毒性负荷的时空分布,研究了H2S毒性负荷与H2S释放速率之间的关系,建立了以H2S释放速率为指标的山区含硫气井应急计划区的划分方法。结果表明,本次分析所用的591口H2S释放速率大于零的川渝地区含硫气井中,16.75%的含硫气井应急计划区半径大于公众安全防护距离。对于中国主要含硫气井集中分布在人口密集的川渝地区的实际情况而言,该方法是比较适用且可行的。  相似文献   

4.
高含H2S气田集输站场内原料气分离器在气水分离过程中产生的气田水,在低压闪蒸过程中会闪蒸出大量H2S等有毒气体,采用常规的燃烧排放方式处置这部分气体,所产生的SO2浓度远远超过了国家的相关标准。采用HYSYS及PROMAX等软件建模分析气田水的闪蒸气与原料气中H2S含量的关系,通过理论计算闪蒸气燃烧所产生的SO2浓度,提出采用金属隔膜式压缩机将闪蒸出的H2S等酸性气体增压回流至原料气管线,一同输送至天然气净化厂进行脱硫及硫磺回收处理,实现高含H2S气田集输站场闪蒸气体零排放。  相似文献   

5.
常温下硫化氢腐蚀产物的自燃历程   总被引:1,自引:0,他引:1  
含硫原油加工过程中,H2S 腐蚀产物具有很高的自燃性,可以引起火灾和爆炸。根据 H2S 腐蚀产物的氧化反应产物中单质硫的含量及氧化尾气组成,结合差热 热重分析结果,按氧化程度可以将 H2S 腐蚀产物氧化自燃过程分为初级、中级和完全氧化3个阶段。在初级氧化阶段,H2S 腐蚀产物发生不完全氧化反应,氧化反应温度低于70℃,没有 SO2生成;在中级氧化阶段,部分 H2S 腐蚀产物发生完全氧化反应,氧化反应温度在70~190℃之间,有SO2生成,随着氧化反应温度的升高,发生完全氧化的 H2S 腐蚀产物的量增加;在完全氧化阶段,H2S 腐蚀产物发生完全氧化反应,反应系统内的单质硫被氧化为SO2,氧化反应温度超过190℃。结合氧化反应产物的 XRD 分析,给出了 H2S 腐蚀产物在不同氧化自燃阶段发生的化学反应。  相似文献   

6.
考察了吸附剂K-1对H2S的吸附特性和H2S滞留比对CH4吸附能力的影响,研究了H2O2溶液浓度对吸附剂性能的影响,以及H2O2溶液氧化法在不同H2S滞留比时吸附剂的再生效率。实验结果显示,吸附剂对H2S具有很强的吸附能力和吸附不可逆性,滞留H2S可导致吸附剂对CH4吸附能力大幅下降;H2O2溶液浓度应控制在12% (重量分数)以下,高浓度的H2O2溶液会破坏吸附剂本身的孔结构,H2O2溶液氧化法对H2S污染型,尤其是低污染型吸附剂具有很好的再生效果。通过对重复再生吸附剂的结构参数和再生产物的分析,讨论了H2O2溶液氧化法的再生机理。  相似文献   

7.
加氢脱硫(HDS)催化剂NiMoS活性相表面非化学计量硫(Sx)物种的动态变化是HDS活性的决定因素。在HDS过程中,Sx物种处于动态平衡,且这一平衡与催化剂、H2S分压及硫化温度相关。笔者采用程序升温的方法研究了催化剂载体、助剂Ni、硫化温度、H2S分压对NiMoS催化剂表面Sx物种的影响。结果表明:催化剂载体对Sx物种的总量和还原性具有显著影响,Ni的引入显著促进Sx物种还原,提升HDS活性;硫化气相H2S分压决定了催化剂表面Sx物种含量,气相中H2S分压升高易使Sx物种增多,表面可利用NiMoS活性位减少,从而导致HDS活性降低。Sx物种含量与H2S分压及硫化温度的关系符合热力学平衡及van′t Hoff等压方程,进一步将Sx物种含量与HDS反应速率系数进行关联,提出H2S分压Sx物种含量HDS活性之间的定量关系。  相似文献   

8.
目的 有效处理含硫尾气,确保装置“安、稳、长、满、优”运行。方法 采用Aspen Plus V11软件基于Peng-Robinson热力学模型对改进络合铁装置的H2S处理过程进行了全流程模拟,并根据Box-Behnken Design对其进行了响应面设计,得到了最佳H2S脱除率及其对应的优化操作参数。结果 此模拟流程能够较好地反映改进络合铁装置的实际运行情况,可以作为后续优化研究的基础模型。当循环溶液温度为47.2℃、循环溶液中Fe3+质量分数为8.410 0%、循环溶液体积流量为3.12 m3/h、电解槽电压为0.64 V时,改进络合铁装置的H2S脱除率高达99.999 988%。此时,外排气中H2S质量浓度为9.5 mg/m3,完全可以满足外排气中H2S质量浓度不大于10 mg/m3的约束条件;t检验结果表明,采用响应面法优化得到的预测值和验证值之间不存在显著差异,其准确度一致。结论 该...  相似文献   

9.
目前经典的井筒稳态多相流流动模型没有考虑关井后重组分沉降作用,可能导致井筒压力-温度预测不准。针对酸性气井井筒复杂流动特征,基于热动力学平衡原理和热扩散理论,考虑酸性气井关井后H2S及CO2重组分在重力、化学势变化以及热扩散作用下向下沉降,建立了重组分沉降过程中组分梯度方程和扩散模型,模拟计算了井筒压力分布和组分变化。研究表明:关井后井筒中H2S和CO2重组分沉降导致流体密度、H2S、CO2摩尔浓度从井口到井底逐渐增大,而C1、C2组分含量逐渐减少。实例井5 000 m井深井口样和井底样H2S含量差别近10%,建议酸性气井流样分析宜采用井底样。这也解释了为什么酸性气井井底一般腐蚀更为严重。  相似文献   

10.
天然气组分的水合常数、水合热及理论溶解度   总被引:10,自引:0,他引:10  
天然气在水中的溶解度是天然气地球化学定量研究中的基础参数。欲应用理论公式计算天然气组分在水中的溶解度,关键在于建立天然气组分的水合平衡常数与温度的关系。本文利用天然气组分的溶解度数据,标定了甲烷、乙烷、丙烷、N2、CO2和H2S的水合常数与温度的关系,从而建立了上述组分的理论溶解度公式。经验证,至少在下述分压范围内,上述气体的溶解度计算值与实测值基本吻合:甲烷≤60MPa;乙烷≤5MPa;丙烷≤3MPa;N2≤50MPa;CO2≤5MPa;H2S≤5MPa.天然气的水合热是研究气水合物形成的重要参数。研究表明,天然气组分的水合反应符合一般的化学反应规律。根据计算,上述气体的水合热分别为:甲烷,-17.741;乙烷,-10.471;丙烷,-9.441;CO2,-17.520;N2,-15.418;H2S,-11.845(负号表示水合反应为放热反应,水合热的单位:kJ/mol).从理论上证明了当压力趋向无穷大时,气体的溶解度趋向一极限值。  相似文献   

11.
为了探索实际传输过程中H2S在非金属管材中的渗透规律,以不同温度条件下H2S在多层聚合物复合管道中的渗透系数实测值为基准,建立了H2S在多层聚合物复合管道中的渗透模型,并利用渗透理论和渗透公式获得了不同温度、压力条件下H2S在非金属管道增强层中产生的气压和渗透量随时间变化的规律。结果发现:①H2S在聚偏氟乙烯(PVDF)和高密度聚乙烯(HDPE)薄膜中的渗透规律符合Arrhenius关系;②H2S在管道中的渗透气压随温度和管内压力升高而急剧升高,且很快达到平衡,而其渗透量呈一次函数持续增加;③H2S通过内衬层管材的渗透量随温度和管内压力的增大而线性增大,但前者对H2S渗透行为的影响大于后者引起的影响。  相似文献   

12.
为了解决高含硫天然气脱硫工艺中脱硫选择性差、能耗高等问题,提出了基于大数据的高含硫天然气脱硫工艺优化方法。首先,通过工艺流程分析,发现对性能指标有显著影响的决策参数,建立无迹卡尔曼滤波神经网络动态模型,获知了脱硫工艺的潜在规律;然后,针对原脱硫工艺中H_2S、CO_2过分脱除问题,采用偏好多目标优化的方法,分别以H2S浓度逼近2.5 mg/m~3、CO_2浓度逼近2%为目标函数,采用非支配性排序遗传算法对模型进行多目标优化,获得了最佳工艺参数。采集某高含硫天然气净化厂脱硫单元2014年1—12月的生产数据,取前80%数据作为训练集,后20%数据作为测试集,进行了仿真实验。结果表明:1所建立的动态模型能够较好地反映脱硫工艺生产规律;2优化结果建议适当降低一级吸收塔温度,提高二级吸收塔温度,提高闪蒸罐压力,并减少胺液循环量;3优化后净化气中H_2S浓度将由0.62 mg/m~3提高至3.22 mg/m~3,CO_2浓度由1.19%提高至1.99%,脱硫选择性显著提高;4相对胺液循环量下降16.67%,蒸汽消耗量减少,净化气产率提高0.8%,总体实现了增产节能降耗的目的。  相似文献   

13.
以逆流旋转填料床为脱硫设备,络合铁为脱硫剂,对模拟气中的H2S进行了脱硫实验研究。考察了气/液流量比、超重力因子、气体流量、H2S入口质量浓度对脱硫率的影响,并对比分析了逆流旋转填料床与错流旋转填料床的脱硫性能。结果表明,相比错流旋转填料床,逆流旋转填料床更适合于低硫尾气的精脱硫,脱硫率可达99%以上。与传统塔式脱硫技术相比,逆流旋转填料床络合铁法脱硫技术脱硫效率高、气/液流量比大、设备体积小,具有工业化应用潜力。  相似文献   

14.
高H2S天然气一般被认为是硫酸盐热化学还原反应(TSR)的结果。在高温高压不饱和水蒸气条件下对天然气与硫酸镁TSR反应进行了热模拟实验研究,确定了TSR反应途径,探讨了TSR可能的地质影响因素。结果表明,天然气与硫酸镁反应主要生成MgO、H2S、CO2及焦炭等产物,随着模拟温度升高,TSR转化率逐渐增大,天然气中总烃含量减少,CH4比例逐渐增大,C2H6与C3H8 含量呈递减趋势。干燥系数与CO2含量呈明显的正相关关系,干燥系数与H2S含量以及CO2与H2S含量之间正相关性低,这可能是由于TSR不同阶段主要控制因素不同导致的。地质条件下,高硫化氢天然气的形成与演变很可能受控于温度、碳链长度、金属离子、水和硫化氢含量这几种主要因素。  相似文献   

15.
����H2SŨ��Ϊ15%��50%���������򷽷�   总被引:1,自引:0,他引:1  
??Through an appropriately simpllfied calculation model,the sulfur-making method of sour containing l5%??50% H2S has been studied,and two main understandings have been obtained as fol-lowing:(1)the conventional divided-flow Claus Process can be used for the H2S concentration of l5% ??25%,the direct-flow Claus Process may be used for the sour gas of 49% H2S as its concentration lower limit in general,accordmg to the thermal stability of commonly used material of furnace wall,25%??45% H2S is suitablely used for non-conventional divided-flow Claus Process;(2)the total conversion rate of H2S of non-conventional Claus Process is lower than direct-flow process but higer than conventional divided-flow process.  相似文献   

16.
渤海湾盆地继冀中坳陷晋县凹陷发现H_2S气藏后,在黄骅坳陷大港探区又发现了高含H_2S气藏,在煤成气气藏中发现如此高含量的H_2S和CO_2在国内还属首次,酸性气体的成因也引起国内学者的关注。通过气、岩有机地球化学参数的对比,认为该区高含量H_2S归因于TSR反应,揭示了煤成气区同样可以发生TSR,丰富了过去只在海相原油裂解气区发生TSR的地质认识;高含量有机或有机-无机混合的CO_2除了与碳酸盐岩的热变质、TSR有关外,与烃类气体属于煤成气有很大的关系。黄骅坳陷大港探区H_2S的富集受储层中的硫源丰富程度和地层温度的控制,高含H_2S天然气主要分布在石炭系—二叠系覆盖且埋深较大的中南部地区,如埕海、泊古—乌马营—王官屯等地区。研究成果对该区高含酸性天然气形成机制以及天然气下一步勘探部署工作都具有积极指导意义。  相似文献   

17.
高含硫裂缝性气藏储层伤害数学模型   总被引:6,自引:2,他引:4  
在高含硫裂缝性气藏气体开采过程中,地层压力不断降低,导致硫微粒在气相中的溶解度逐渐减小,在达到临界饱和态后从气相中析出,并在储层孔隙及喉道中运移、沉积,导致地层孔隙度和渗透率降低。地层压力的降低导致裂缝逐渐闭合,也会导致地层孔隙度和渗透率的降低,从而影响气井的产能和经济效益,严重时可导致气井停产。针对高含硫裂缝性气藏复杂渗流特征,基于空气动力学气固理论描述硫微粒在多孔介质中的运移和沉积,建立了一个全新的、能够综合描述多孔介质中硫微粒的析出、运移、沉积、堵塞以及应力敏感的高含硫裂缝性气藏储层伤害数学模型,并以L7井为例进行了实例分析。研究结果表明:在定产量生产条件下,硫沉积对气井生产动态的影响主要表现为气井的稳产时间缩短及气井产量在递减期内的递减速度加快。  相似文献   

18.
��The reactions in combustion furnace are very complicated in Claus sulfur recovery process, but it is important for design and production to research these reactions. The reactions which produce H2, CO. COS and CS2 are discussed in this article. It is pointed out that H2 and CO are mainly generated from the decomposition and reactions of H2S and CO2 in acid gas and the resultant is rough increased with the increasing of the H2S content in acid gas and the temperature of furnace. COS is formed by the reaction between CO and elemental S. Once H2S content in acid gas is over 70%, COS yield drops rapidly. CS2 is formed by the reaction between CH4 and elemental S. When the temperature of furnace increases to about 1300��, the generation of CS2 is stopped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号