首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
天然气水合物抑制过程中甲醇用量的影响   总被引:6,自引:4,他引:2  
采用可视化高压流体测试装置,考察了甲醇含量对陕北某气田天然气水合物生成条件的影响。实验结果表明,气体组成对其水合物的生成条件有较大的影响,大分子气体或液态烃的存在可显著降低水合物的生成压力;甲醇含量对水合物生成的温度降有较大影响,甲醇含量越高,水合物生成温度降越大;水合物生成压力的对数(lgp)与温度(t_e)呈线性关系,不同甲醇含量时水合物生成条件的lgp~t_e曲线相互平行;甲醇质量分数小于30%时,Hammerschmidt方程和Nielsen-Bucklin方程对水合物生成温度降的预测偏差较小,但甲醇质量分数大于30%时,预测偏差较大;采用Nielsen-Bucklin修正式,预测甲醇用量的偏差小于2%。  相似文献   

2.
Temperature, pressure, and composition of gas mixtures in deepwater pipelines promote rapid formation of gas hydrates. To avert this dilemma, it is more significant to find out the temperature and pressure limits in gas hydrates formation of the deepwater pipeline. The objective of this research is to develop an optimization method that finds the optimal temperature and pressure profile for natural gas hydrate formation conditions and an error calculation method to find the realistic approach of the hydrate formation prediction model. A newly developed correlation model is computing the hydrate formation pressure and temperature for a single component of methane (CH4) gas. The proposed developed prediction model is based on the 2 and 15 constant coefficients and holds a wide range of temperature and pressure data about 2.64 to 46°C and 0.051 to 400 MPa for pure water and methane, respectively. The reducing error discrepancies are 1.2871, 0.35012, and 1.9052, which is assessed by GA, PSO, and GWO algorithms, respectively. The results show the newly developed optimization algorithms are in admirable compliance with the experimental data and standards of empirical models. These correlations are providing the capability to predict gas hydrate forming conditions for a wide range of hydrate formation data.  相似文献   

3.
氧化石墨烯作为新型促进剂加速CO_2水合物生成实验   总被引:3,自引:0,他引:3  
为了解决气体水合物生成速率慢、储气密度低、生成条件苛刻等难题,利用高压反应釜生成实验装置,探究了添加质量浓度为0.2 g/L的氧化石墨烯对CO_2水合物生成的诱导时间、气体消耗量及CO_2水合物相平衡压力的影响,揭示了温度和压力的变化规律,与去离子水中CO_2水合物生成实验进行了比较并分析了其促进机理。结果表明:①氧化石墨烯具有动力学促进和热力学促进的双重作用,能够加快CO_2水合物体系的传热传质效率,促进气体溶解,提高成核速率和气体消耗量,降低相平衡压力;②与去离子水相比,氧化石墨烯体系下CO_2水合物生成诱导时间缩短了74%~85%;③温度为6℃时,随着初始压力的不同氧化石墨烯均能提高气体消耗量,在4 MPa时气体消耗量增长幅度最大,达17.2%,提高了水合物储气密度;④氧化石墨烯降低CO_2水合物相平衡压力的最大降幅为20%。结论认为,该新型促进剂能够提高CO_2水合物的生成速率和储气密度。  相似文献   

4.
In this communication, the impacts of adding SDS (sodium dodecyl sulfate), TBAF (tetra-n-butylammonium fluoride) and the mixture of SDS + TBAF on the main kinetic parameters of CO2 hydrate formation (induction time, the quantity and rate of gas uptake, and storage capacity) were investigated. The tests were performed under stirring conditions at T = 5 ℃ and P = 3.8 MPa in a 169 cm3 batch reactor. The results show that adding SDS with a concentration of 400 ppm, TBAF with a concentration of 1–5 wt%, and the mixture of SDS + TBAF, would increase the storage capacity of CO2 hydrate and the quantity of gas uptake, and decrease the induction time of hydrate formation process. The addition of 5 wt% of TBAF and 400 ppm of SDS would increase the CO2 hydrate storage capacity by 86.1% and 81.6%, respectively, compared to pure water. Investigation of the impact of SDS, TBAF and their mixture on the rate of gas uptake indicates that the mixture of SDS + TBAF does not have a significant effect on the rate of gas uptake during hydrate formation process.  相似文献   

5.
Under natural conditions, natural gas hydrate occurs in the pores of porous media found in the sedimentary layer. Thus, the rapid formation and basic properties of the hydrate in the porous medium must be studied. Quartz sand with different particle sizes compounded with Sodium Dodecyl Sulfate solution was used to study the hydrate formation in the system at 275.15 K and 6 MPa under a saline environment. Results were as follows. 1) Methane gas uptake in a saline system with NaCl concentration of 50 mmol was higher than that in pure water. This finding indicated that although the salt is a thermodynamic inhibitor, low concentration of NaCl can promote the formation of hydrates. 2) In the initial stage of the experiment, the rate of hydrate formation in saline environment was significantly higher than that in pure water. After approximately 1 h, the formation rate of hydrate in the compound system decreased under a saltwater environment and was lower than that in the complex system under pure water. 3) The hydrogen bond network inside the high-concentration NaCl solution was seriously damaged. In this case, water molecules cannot easily form a cage structure, and the presence of chlorine ions weakens the stability of a small amount of formed hydrate cage, thereby further inhibiting the formation of hydrates. However, in the low-concentration NaCl system, mass transfer is improved, and the formation of hydrate is promoted because of the weakened hydrogen bonding at the gas–liquid interface.  相似文献   

6.
The effect of synthesized nanostructures,including graphene oxide,chemically reduced graphene oxide with sodium dodecyl sulfate(SDS),chemically reduced graphene oxide with polyvinylpyrrolidone,and multi-walled carbon nanotubes,on the kinetics of methane hydrate formation was investigated in this work.The experiments were carried out at a pressure of 4.5 MPa and a temperature of 0 ℃ in a batch reactor.By adding nanostructures,the induction time decreases,and the shortest induction time appeares at certain concentrations of reduced graphene oxide with SDS and graphene oxide,that is,at a concentration of 360 ppm for reduced graphene oxide with SDS and 180 ppm for graphene oxide,with a 98% decrease in induction time compared to that in pure water.Moreover,utilization of carbon nanostructures increases the amount and the rate of methane consumed during the hydrate formation process.Utilization of multi-walled carbon nanotubes with a concentration of 90 ppm showes the highest amount of methane consumption.The amount of methane consumption increases by 173% in comparison with that in pure water.The addition of carbon nanostructures does not change the storage capacity of methane hydrate in the hydrate formation process,while the percentage of water conversion to hydrate in the presence of carbon nanotubes increases considerably,the greatest value of which occurres at a 90 ppm concentration of carbon nanotubes,that is,a 253% increase in the presence of carbon nanotubes compared to that of pure water.  相似文献   

7.
为了提高三甘醇脱水效果,有必要考察各种因素对脱水效果的影响。采用HYSYS软件对处理量为15×104m3/d的三甘醇处理装置进行定量分析。通过计算可知,一定范围内,降低湿天然气和贫甘醇进塔温度,提高贫甘醇浓度、TEG循环量、操作压力或者增加塔板数,脱水效果加强。在本装置中,湿天然气和贫TEG溶液的最佳进塔温度分别为30℃和36℃。理论塔板数为2,操作压力为6.4MPa,贫TEG溶液浓度为98.8%,循环量为0.3 m3/h时,天然气水露点从32℃降至-8.647℃。同时,引入少量汽提气可以大幅度降低脱水后干气的水含量,增强脱水效果。  相似文献   

8.
向气体水合物反应液中添加表面活性剂能够降低反应液的表面张力,有利于促进气体水合物生成,提高气体水合物生成速率。为了明确表面活性剂对气体水合物反应液表面张力的影响规律,在3℃~12℃温度范围,利用德国KRUSS公司生产的界面张力仪K11中的板法分别测定了十二烷基苯磺酸钠(SDBS)、十六烷基三甲基溴化铵(CTAB)和聚氧乙烯-聚氧丙烯-聚氧乙烯(P123)3种表面活性剂对反应液表面张力的降低效果,考察了浓度、温度对溶液表面张力的影响,并对影响机理进行了分析。实验结果表明:3种表面活性剂均能降低气体水合物反应液表面张力,CTAB、P123、SDBS的临界胶束浓度(CMC)分别为质量分数300×10-6、500×10-6、700×10-6;CTAB降低水合反应液表面张力效果最优,添加质量分数为300×10-6时,表面张力的平均降幅约为79.6%。  相似文献   

9.
Abstract

The effect of temperature and impeller speed on the performance of induced gas flotation (IGF) systems for the removal of oil from produced water in different ranges (5–300 g/L) of total dissolved solids (TDS) was investigated in a pilot plant study. Furthermore, it was evaluated whether the IGF pilot plant effluent could reach the 15 mg/L outlet oil content as required by Article VI of the Kuwait Convention for Persian Gulf region, before being discharged to the sea. The results showed that oil removal efficiencies up to 90% could be reached at high temperature (80°C) in just one single flotation cell without adding any chemicals. Flotation unit, however, should be followed by at least one more flotation cell in series in order to guarantee the Kuwait Convention marine pollution discharge standard for the effluent oil content.  相似文献   

10.
Abstract

In order to investigate the effect of different nonionic surfactants on hydrate formation in oil-water emulsion systems, the hydrate formation experiments were carried out in a diesel water-in-oil emulsion system with a water cut of 40% using nonionic surfactants such as Span80, Tween80, Span20 and Tween20, respectively. The results show that under the experimental conditions of 275?K and 7?MPa, a certain concentration of nonionic surfactant can promote the growth of hydrates in diesel emulsion systems, shorten the hydration reaction time, and have a significant effect on the improvement of gas storage density. The combination of Span80 and Tween80 in a mass ratio of 1:1 was the most effective in promoting the formation of hydrate in the emulsion system. When the mass fraction was 0.5%, the hydration reaction time was the shortest and the hydrate gas storage density was the highest. Due to the addition of the nonionic surfactant, a stable interfacial film and interfacial charge are formed around the water droplets of the emulsion system, making it difficult for the droplets to approach and polymerize, which maintains the stability of the water-in-oil emulsion system and has great reference value for the study of hydrate storage and transportation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号