首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
针对柴油加氢精制过程的产品质量难以优化和预测的问题,提出了人工神经网络模型。根据国内某石化企业1.0 Mt/a柴油加氢精制装置生产操作数据,分别应用动量BP神经网络、LMBP神经网络和RBF神经网络建立了用于预测柴油加氢产品硫含量的模型。并对建立的RBF神经网络模型的泛化能力进行了考察。结果表明,动量BP神经网络、LMBP神经网络和RBF神经网络预测的平均相对误差分别为3.50%,2.30%,2.18%,RBF神经网络模型的预测性能最佳,且具有良好的泛化能力,能够在工艺操作参数变化时准确地预测柴油产品的硫含量,为柴油加氢精制装置的良好运行和优化操作提供了指导。  相似文献   

2.
根据某炼油厂S Zorb装置的生产工艺和操作规范,用24个操作变量与精制汽油主产品的流量和硫含量的实际生产数据进行了相关性分析,压缩为10个操作变量后建立了基于Aspen Plus的生产过程机理模型;经随机抽样检验和灵敏度分析后,以原料进料流量和硫含量、加热炉进口温度、加氢石脑油进料流量、热分压力、热分温度、干气出装置温度、冷分温度为输入,精制汽油的流量、硫含量和氮含量为输出运行机理模型,拓展了装置的在线产品预测数据集;在此拓展数据集上,采用基于麻雀搜索算法的正则化极限学习机(SSA-RELM)建立了装置的在线产品预测数据驱动模型;最后以进料分区,将精制汽油流量、硫含量和氮含量为优化目标,给出了6个分区的在线操作最优化方案。  相似文献   

3.
采用100 mL加氢装置,在温度320~360 ℃、空速1.2~2.0 h-1、氢油体积比350~550、压力6~8.5 MPa的条件下,应用Ni-Mo-P/Al2O3加氢精制催化剂对5种劣质汽柴油混合加氢脱氮率进行了考察。分别应用BP神经网络和RBF神经网络建立了用于预测汽柴油混合加氢脱氮率的模型,并应用RBF神经网络考察了原料油性质和工艺条件对加氢脱氮反应的影响大小。结果表明:BP神经网络和RBF神经网络对脱氮率预测的平均相对误差分别为3.42%和2.58%,均能满足工业要求;RBF神经网络的预测性能优于BP神经网络;实验中所用原料油性质对加氢脱氮反应的影响由强到弱的顺序为:硫含量>密度>氮含量>50%馏出点>运动黏度>溴价;工艺条件对加氢脱氮反应的影响由强到弱的顺序为:温度>空速>压力>氢油比,为汽柴油混合加氢脱氮工艺条件优化提供了指导。  相似文献   

4.
针对柴油加氢脱硫生产过程中出现的工艺参数和产品质量难以精准控制的问题,提出粒子群优化(POS-BP)神经网络。基于中国石油大庆石化公司1 300 kt/a柴油加氢脱硫装置生产工艺操作台账数据,选取生产过程中的易波动工艺参数构建训练样本集合和测试样本集合,采用PSO-BP神经网络预测生产操作参数变化时精制柴油产品中硫含量的变化,将POS-BP神经网络与神经网络(BP)和遗传算法优化(GA-BP)神经网络进行横向预测效果比较。实验结果表明,BP神经网络预测的均方误差为2.66×10~(-3),GA-BP神经网络预测的均方误差为2.94×10~(-5),PSO-BP神经网络预测的均方误差为2.41×10~(-5);PSO-BP神经网络预测值与实际值最为接近,且预测结果较佳,具有较好的稳定性和泛化能力,能够精确预测生产操作参数变化时精制柴油产品中硫含量的变化。  相似文献   

5.
针对柴油加氢脱硫生产过程中出现的工艺参数和产品质量难以精准控制的问题,提出粒子群优化(POS-BP)神经网络。基于中国石油大庆石化公司1 300 kt/a柴油加氢脱硫装置生产工艺操作台账数据,选取生产过程中的易波动工艺参数构建训练样本集合和测试样本集合,采用PSO-BP神经网络预测生产操作参数变化时精制柴油产品中硫含量的变化,将POS-BP神经网络与神经网络(BP)和遗传算法优化(GA-BP)神经网络进行横向预测效果比较。实验结果表明,BP神经网络预测的均方误差为2.66×10^(-3),GA-BP神经网络预测的均方误差为2.94×10^(-5),PSO-BP神经网络预测的均方误差为2.41×10^(-5);PSO-BP神经网络预测值与实际值最为接近,且预测结果较佳,具有较好的稳定性和泛化能力,能够精确预测生产操作参数变化时精制柴油产品中硫含量的变化。  相似文献   

6.
根据青岛炼油化工有限责任公司加氢处理装置实际生产数据,建立了加氢处理催化剂RN-32V的失活模型,并对模型进行了验证。结果表明,模型计算的理论产品硫含量与实际产品硫含量的误差在允许范围内,说明所建立的催化剂失活模型可以较准确地预测催化剂的失活速率及使用寿命,对于优化装置操作,确保装置长期稳定运转有一定的指导意义。  相似文献   

7.
将抚顺石化公司自主研发的FO-35M催化汽油加氢改质催化剂在乌石化0.6 Mt/a催化汽油加氢改质装置进行工业应用试验,考察了FO-35M催化剂在乌石化工业装置上的应用情况,并采用不同工艺条件进行了国Ⅳ和国Ⅴ标定。实验结果表明,FO-35M催化剂在乌石化0.6 Mt/a催化汽油加氢改质装置上运转59个月,显示出较好的稳定性;乌石化0.6 Mt/a催化汽油加氢改质装置可实现重汽油先脱硫后芳构工艺和重汽油先芳构后脱硫(M-DSO)工艺的灵活切换;国Ⅳ工况标定结果显示,M-DSO工艺操作条件缓和,在降硫、降烯烃的同时,较好的恢复辛烷值。M-DSO工艺国Ⅴ工况生产结果显示,重汽油硫含量降至12 mg/kg左右,辛烷值损失小于2个单位,回调全馏分汽油硫含量可降至10 mg/kg以下,能够满足乌石化国Ⅴ汽油出厂调和的要求。  相似文献   

8.
《石油化工应用》2017,(3):136-140
为了适应汽油产品质量升级的要求,宁夏石化公司2013年新建了一套1.2 Mt/a催化汽油加氢装置,该装置采用中国石油石油化工研究院和中国石油大学(北京)共同开发的GARDES汽油加氢技术。对1.2 Mt/a催化汽油加氢装置进行国Ⅴ汽油试生产结果表明:在加工硫含量79.3 mg/kg、硫醇硫含量20.66 mg/kg的催化汽油时,混合汽油硫含量9.1 mg/kg、硫醇硫含量3.5 mg/kg,可满足国Ⅴ汽油排放标准的要求;混合汽油产品的辛烷值损失为1.4个单位,脱硫选择性较好;混合汽油产品收率98.36%、能耗14.85千克标油/吨,能耗低于设计值。  相似文献   

9.
郑龙磊 《石化技术》2023,(6):218-220
大庆炼化公司150万吨/年汽油加氢装置在6月份重汽油产品硫含量出现连续不合格现象,与中国石油天然气股份有限公司兰州化工研究中心研究分析,重汽油产品硫含量不合格主要是由于原料中砷含量较高,催化剂中毒,活性下降导致催化剂活性下降,产品硫含量出现连续不合格。  相似文献   

10.
某汽油加氢脱硫装置应用GARDES技术生产高辛烷值脱硫汽油产品,实现了工艺参数优化控制,包括分馏单元轻、重汽油切割点的选择和加氢脱硫单元各参数的优化控制。该技术在保证脱硫汽油产品硫含量≯50 mg/kg的前提下,将产品烯烃含量从31.5%提高至35.0%。提高了汽油池中97~#乙醇调和汽油组分的脱硫汽油调和比例,增产了高辛烷值汽油产品。  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 10, pp. 9–10, October, 1991.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号