首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Organic geochemical studies of Cretaceous formations in the Gongola Basin, northern Nigeria, show TOC values that are generally higher than the minimum (0.5 wt %) required for hydrocarbon generation. Data from Rock‐Eval pyrolysis and biomarker studies indicate the presence of both terrestrial and marine derived Types II and III organic matter, which is immature in the Gombe Formation and of marginal maturity in the Yolde Formation. Immature Type III to IV OM is present in the Pindiga Formation; and Type III OM, with a maturity that corresponds to the conventional onset (or perhaps peak) of oil generation occurs in the Bima Formation. However, Bima Formation samples from the 4710 – 4770 ft (1435.6 – 1453.9 m) depth interval within well Nasara‐1 indicate Type I OM of perhaps lacustrine origin (H31R/H30 ratio generally ≤0.25). Although the Nasara‐1 well was reported to be dry, geochemical parameters (high TOCs, S1, S2 and Hls, low Tmax compared to adjacent samples, a bimodal S2 peak on the Rock‐Eval pyrogram, a dominance of fluorinite macerals), together with generally low H3IR/H30 biomarker ratios within the 4710–4770 ft (1435.6–1453.9 m) interval, suggest the presence of migrated oil, perhaps sourced by lacustrine shales in the Albian Bima Formation located at as‐yet unpenetrated depths. The presence of the migrated oil in the Bima Formation and its possible lacustrine origin suggest that the petroleum system in the Gongola Basin is similar to that of the Termit, Doba and Doseo Basins of the Chad Republic, where economic oil reserves have been encountered.  相似文献   

2.
A geochemical study of the argillaceous sequences of Turonian—early Santonian age penetrated by ten shallow boreholes in the Upper Benue Trough was carried out.
The average total organic carbon contents of the sampled sections of the Bima, Yolde, Pindiga, Sukuliye and Jessu Formations were 0.30, 1.40, 0.85, 0.60, and 0.54%, respectively. Apart from the Bima Formation, all exceed the minimum value (0.5% TOC) normally required for a petroleum source rock. In spite of the moderate TOC, however, the content of soluble organic matter (SOM) and saturated hydrocarbons (SHC) was generally low.
In terms of organic-matter type, a predominantly marine fades with some terrigenous input is inferred for the Sukuliye and Pindiga Formations. This indicates that open-marine conditions might not have been established during the Turonian marine transgression, which deposited these units.
Within the updip sector of the basin, the organic matter is thermally immature. The most promising zones seem to be located south of the study area, where source rocks that have attained optimum levels of maturity for hydrocarbons occur.  相似文献   

3.
This paper reviews the Middle Jurassic petroleum system in the Danish Central Graben with a focus on source rock quality, fluid compositions and distributions, and the maturation and generation history. The North Sea including the Danish Central Graben is a mature oil province where the primary source rock is composed of Upper Jurassic – lowermost Cretaceous marine shales. Most of the shale‐sourced structures have been drilled and, to accommodate continued value creation, additional exploration opportunities are increasingly considered in E&P strategies. Triassic and Jurassic sandstone plays charged from coaly Middle Jurassic source rocks have proven to be economically viable in the North Sea. In the Danish‐Norwegian Søgne Basin, coal‐derived gas/condensate is produced from the Harald and Trym fields and oil from the Lulita field; the giant Culzean gas‐condensate field is under development in the UK Central North Sea; and in the Norwegian South Viking Graben, coal‐derived gas and gas‐condensate occur in several fields. The coaly source rock of the Middle Jurassic petroleum system in the greater North Sea is included in the Bryne/Lulu Formations (in Denmark), the Pentland Formation (in the UK), and the Sleipner and Hugin Formations in Norway. In the Danish Central Graben, the coal‐bearing unit is composed of coals, coaly shales and carbonaceous shales, has a regional distribution and can be mapped seismically as the ‘Coal Marker’. The coaly source rocks are primarily gas‐prone but the coals have an average Hydrogen Index value of c. 280 mg HC/g TOC and values above 300 mg HC/g TOC are not uncommon, which underpins the coals' capacity to generate liquid hydrocarbons (condensate and oil). The coal‐sourced liquids are differentiated from the common marine‐sourced oils by characteristic biomarker and isotope compositions, and in the Danish Central Graben are grouped into specific oil families composed of coal‐sourced oil and mixed oils with a significant coaly contribution. Similarly, the coal‐sourced gases are recognized by a normally heavier isotope signature and a relatively high dryness coefficient compared to oil‐associated gas derived from marine shales. The coal‐derived and mixed coaly gases are likewise assigned to well‐defined gas families. Coal‐derived liquids and gas discoveries and shows in Middle Jurassic strata suggest that the coaly Middle Jurassic petroleum system has a regional distribution. A 3D petroleum systems model was constructed covering the Danish Central Graben. The model shows that present‐day temperatures for the Middle Jurassic coal source rock ('Coal Marker') are relatively high (>150 °C) throughout most of the Danish Central Graben, and expulsion of hydrocarbons from the ‘Coal Marker’ was initiated in Late Jurassic time in the deep Tail End Graben. In the Cretaceous, the area of mature coaly source rocks expanded, and at present day nearly the whole area is mature. Hydrocarbon expulsion rates were low in the Paleocene to Late Oligocene, followed by significant expulsion in the Miocene up to the present day. High Middle Jurassic reservoir temperatures prevent biodegradation.  相似文献   

4.
This study investigates the hydrocarbon generation potential, kerogen quality, thermal maturity and depositional environment of Middle – Upper Jurassic sedimentary rocks in the Blue Nile Basin, Ethiopia, using organic petrography, Rock-Eval pyrolysis and molecular organic geochemistry. Thirty-seven outcrop samples were analysed for their total organic carbon (TOC) and inorganic carbon (TIC) contents. The samples came from a Toarcian – Bathonian transitional glauconitic shale-mudstone unit, the overlying Upper Bathonian Gohatsion Formation, and the Lower Callovian – Upper Tithonian Antalo Limestone Formation. Thirteen samples with sufficient TOC contents for further analysis of the organic matter, eight from the Antalo Limestone Formation and five from the glauconitic shale-mudstone unit, were selected and analysed using Rock-Eval pyrolysis. Vitrinite reflectance (VRr) was measured on random particles, and qualitative maceral analysis was performed under normal incident and UV light. Nine samples were selected for molecular organic-geochemical analyses. All the samples originating from the Gohatsion Formation showed TOC values which were too low for further analyses of the organic matter. The TOC contents of shales and limestones from the Antalo Limestone Formation and and of shales from the glauconitic shale-mudstone unit were 3.43-6.43% (average 4.85%) and 0.76-3.15% (average 1.72%), respectively, and two coaly shale samples from the latter unit have average TOC values of 18.48%. HI values are very high for shales in the Antalo Limestone Formation (average 575 mg HC/g TOC) but lower for the shales in the glauconitic shale-mudstone unit. The vitrinite reflectance of shales from the Antalo Limestone Formation ranged between 0.21% and 0.47%; coaly shales from the glauconitic shale-mudstone unit have VRr% of between 0.29% and 0.35%. Pr/Ph ratios for samples of the Antalo Limestone Formation shales ranged from 0.8 to 1.1, indicating anoxic to suboxic depositional conditions; while shales in the glauconitic shale-mudstone unit show higher values of up to 4.9. In terms of organic petrography, the Antalo Limestone Formation samples are dominated by finely dispersed liptinite particles and alginite; the organic material in the glauconitic shale-mudstone unit is of higher land plant origin, with abundant vitrinite and inertinite. Sterane and hopane biomarker ratios suggest an anoxic/suboxic depositional environment for the Antalo Limestone Formation shales and limestones. These values together with Rock-Eval Tmax (average 414 °C), the high ratio of pristane and phytane over the n-alkanes C17 and C18, and hopane biomarker ratios indicate that the Middle – Upper Jurassic succession is of low thermal maturity in the central parts of the Blue Nile Basin. The Antalo Limestone Formation shales have a high petroleum generation potential, making them a viable target for future exploration activities.  相似文献   

5.
This paper summarizes the results of Rock‐Eval pyrolysis data of 43 shale samples collected from the latest Ordovician – earliest Silurian (Tanezzuft Formation) interval in the CASP JA‐2 well at Jebel Asba on the eastern margin of the Kufra Basin, SE Libya. The results are supported by analysis of cuttings samples from an earlier well of uncertain origin nearby, referred to here as the UN‐REMSA well. The Tanezzuft Formation succession encountered in the JA‐2 well can be divided into three intervals based on Rock‐Eval pyrolysis data. Shales in the shallowest interval (20 – 46.5 m depth) are altered probably by weathering and lack significant amounts of organic matter. Total organic carbon (TOC) contents of shales from the intermediate interval (46.5 – 68.5 m depth) vary between 0.19 and 0.75 wt%. Most samples in this interval have very limited source rock potential although a few have Hydrogen Index (HI) values up to 378 mg S2/g TOC. Tmax values of 422 – 426°C indicate the organic matter is immature. Shales from the deepest interval (68.5 – 73.9 m depth) are diagenetically altered, perhaps by fluids flowing along a nearby fault or along the contact between the Tanezzuft Formation and the underlying Mamuniyat Formation and apparently lack any organic matter. Cuttings samples from the UN‐REMSA well have TOC contents of 0.48–0.87 wt%, HI values of 242–252 mg S2/g TOC, and Tmax values of 421–425°C. These results offer little support for the presence of the basal Silurian (Tanezzuft Formation) source rock which is prolific elsewhere in SW Libya and eastern Algeria and, together with the overall immaturity of the equivalent section, reduces the probability of finding major oil reserves in the eastern part of the Kufra Basin.  相似文献   

6.
An Upper Cretaceous succession has been penetrated at onshore well 16/U‐1 in the Qamar Basin, eastern Republic of Yemen. The succession comprises the Mukalla and Dabut Formations which are composed of argillaceous carbonates and sandstones with coal layers, and TOC contents range up to 80%. The average TOC of the Mukalla Formation (24%) is higher than that of the Dabut Formation (1%). The Mukalla Formation has a Rock‐Eval Tmax of 439–454 °C and an HI of up to 374 mgHC/gTOC, pointing to kerogen Types II and III. The Dabut Formation mainly contains kerogen Type III with a Tmax of 427–456°C and HI of up to 152 mgHC/gTOC. Vitrinite reflectance values ranging between 0.3 and 1.0% and thermal alteration index values between 3 and 6 indicate thermal maturities sufficient for hydrocarbon generation. Three palynofacies types were identified representing marine, fluvial‐deltaic and marginal‐marine environments during the deposition of the Mukalla and Dabut Formations in the late Santonian — early Maastrichtian.  相似文献   

7.
The Buller Coalfield in the northern portion of the Paparoa Trough (NW South Island, New Zealand) contains a middle Eocene bituminous coal-bearing succession that exhibits marked variations in both coal rank and type. The across-basin rank changes result from differential late Palaeogene subsidence of the Paparoa Trough and subsequent inversion. Superimposed upon coalification trends are down-seam variations in coal type, evidenced by isorank variation in conventional chemical parameters. These type variations are not a consequence of changes in maceral group proportions, which are dominated by vitrinite. Forty-eight coal samples from fifteen drillholes through the Brunner Coal Measures have been examined for vitrinite reflectance, proximate analysis, specific energy, and sulphur content. Total Organic Carbon (TOC), Rock-Eval properties and the bulk composition of the bitumen were also determined. All the coals analysed lie within the high volatile bituminous B to medium volatile bituminous coalification stages. Variation in analytical properties within this suite, and more specifically within serial samples, provides insights into the nature of the organic matter comprising the coals. While TOC varies systematically with ash content, reflecting proximity of the depositional mires to fluvial systems, values increase with rank (68–86% ash free). The Hydrogen Index (HI) decreases from 334 to 190 mg hydrocarbons/g TOC over a range of 429 to 470 d?C Tmax, analogous to the volatile matter content and vitrinite reflectance, respectively. The more perhydrous coal samples at a given rank are characterised by depressed Tmax/vitrinite reflectance and elevated Hi/volatile matter contents. Bitumen and sulphur contents are not the primary control onperhydrous characteristics. The bitumen content crudely corresponds to the S1 peak plus the initial portion of the S2 peak liberated under low temperatures during Rock-Eval pyrolysis; however, the bulk of the generative potential is associated with the residual kerogen fraction. Suggate (S) Rank and maximum palaeotemperature appear to be the best indicators of coal rank. A period of significant hydrocarbon generation and release begins at Tmax~440d?C for the Buller coals. The main oil “window” is defined by the interval 440–455d?C Tmax or 0.8–1.1% vitrinite reflectance (Romax), and by correlation to maximum palaeo-temperatures, 125–155d?C. This is further substantiated by mass balance considerations, which indicate that hydrocarbon generation (Petroleum Generation Index (PG1) > 0.1) was occurring in the coals at a maturity level of O. 7–0.9 % Romax (Tmax 440–444 d?C) with an increase in PGI between ~0.9 and 1.1% Romax (~Tmax 445–455 d?C). Between PGI 0.1 and 0.4, the expulsion efficiency rapidly increased, presumably due to generation and expulsion of the bulk of the oil.  相似文献   

8.
Upper Triassic coal‐bearing strata in the Qiangtang Basin (Tibet) are known to have source rock potential. For this study, the organic geochemical characteristics of mudstones and calcareous shales in the Upper Triassic Tumengela and Zangxiahe Formations were investigated to reconstruct depositional settings and to assess hydrocarbon potential. Outcrop samples of the Tumengela and Zangxiahe Formations from four locations in the Qiangtang Basin were analysed. The locations were Xiaochaka in the southern Qiangtang depression, and Woruo Mountain, Quemo Co and Zangxiahe in the northern Qiangtang depression. At Quemo Co in the NE of the basin, calcareous shale samples from the Tumengela Formation have total organic carbon (TOC) contents of up to 1.66 wt.%, chloroform bitumen A contents of up to 734 ppm, and a hydrocarbon generation capacity (Rock‐Eval S1+ S2) of up to 1.94 mg/g. The shales have moderate to good source rock potential. Vitrinite reflectance (Rr) values of 1.30% to 1.46%, and Rock‐Eval Tmax values of 464 to 475 °C indicate that the organic matter is at a highly mature stage corresponding to condensate / wet gas generation. The shales contain Type II kerogen, and have low carbon number molecular compositions with relatively high C21?/C21+ (2.15–2.93), Pr/Ph ratios of 1.40–1.72, high S/C ratios (>0.04) in some samples, abundant gammacerane (GI of 0.50–2.04) and a predominance of C27 steranes, indicating shallow‐marine sub‐anoxic and hypersaline depositional conditions with some input of terrestrial organic matter. Tumengela and Zangxiahe Formation mudstone samples from Xiaochaka in the southern Qiangtang depression, and from Woruo Mountain and Zangxiahe in the northern depression, have low contents of marine organic matter (Type II kerogen), indicating relatively poor hydrocarbon generation potential. Rr values and Tmax data indicate that the organic matter is overmature corresponding to dry gas generation.  相似文献   

9.
The Søgne Basin in the Danish‐Norwegian Central Graben is unique in the North Sea because it has been proven to contain commercial volumes of hydrocarbons derived only from Middle Jurassic coaly source rocks. Exploration here relies on the identification of good quality, mature Middle Jurassic coaly and lacustrine source rocks and Upper Jurassic – lowermost Cretaceous marine source rocks. The present study examines source rock data from almost 900 Middle Jurassic and Upper Jurassic – lowermost Cretaceous samples from 21 wells together with 286 vitrinite reflectance data from 14 wells. The kerogen composition and kinetics for bulk petroleum formation of three Middle Jurassic lacustrine samples were also determined. Differences in kerogen composition between the coaly and marine source rocks result in two principal oil windows: (i) the effective oil window for Middle Jurassic coaly strata, located at ~3800 m and spanning at least ~650 m; and (ii) the oil window for Upper Jurassic – lowermost Cretaceous marine mudstones, located at ~3250 m and spanning ~650 m. A possible third oil window may relate to Middle Jurassic lacustrine deposits. Middle Jurassic coaly strata are thermally mature in the southern part of the Søgne Basin and probably also in the north, whereas they are largely immature in the central part of the basin. HImax values of the Middle Jurassic coals range from ~150–280 mg HC/g TOC indicating that they are gas‐prone to gas/oil‐prone. The overall source rock quality of the Middle Jurassic coaly rocks is fair to good, although a relatively large number of the samples are of poor source rock quality. At the present day, Middle Jurassic oil‐prone or gas/oil‐prone rocks occur in the southern part of the basin and possibly in a narrow zone in the northern part. In the remainder of the basin, these deposits are considered to be gas‐prone or are absent. Wells in the northernmost part of the Søgne Basin / southernmost Steinbit Terrace encountered Middle Jurassic organic–rich lacustrine mudstones with sapropelic kerogen, high HI values reaching 770 mg HC/g TOC and Ea‐distributions characterised by a single dominant Ea‐peak. The presence of lacustrine mudstones is also suggested by a limited number of samples with HI values above 300 mg HC/g TOC in the southern part of the basin; in addition, palynofacies demonstrate a progressive increase in the abundance and areal extent of lacustrine and brackish open water conditions during Callovian times. A regional presence of oil‐prone Middle Jurassic lacustrine source rocks in the Søgne Basin, however, remains speculative. Middle Jurassic kitchen areas may be present in an elongated palaeo‐depression in the northern part of the Søgne Basin and in restricted areas in the south. Upper Jurassic – lowermost Cretaceous mudstones are thermally mature in the central, western and northern parts of the basin; they are immature in the eastern part towards the Coffee Soil Fault, and overmature in the southernmost part. Only a minor proportion of the mudstones have HI values >300 mg HC/g TOC, and the present‐day source rock quality is for the best samples fair to good. In the south and probably also in most of the northern part of the Søgne Basin, the mudstones are most likely gas‐prone, whereas they may be gas/oil‐prone in the central part of the basin. A narrow elongated zone in the northern part of the basin may be oil‐prone. The marine mudstones are, however, volumetrically more significant than the Middle Jurassic strata. Possible Upper Jurassic – lowermost Cretaceous kitchen areas are today restricted to the central Søgne Basin and the elongated palaeo‐depression in the north.  相似文献   

10.
The Fang Basin is one of a series of Cenozoic rift‐related structures in northern Thailand. The Fang oilfield includes a number of structures including the Mae Soon anticline on which well FA‐MS‐48‐73 was drilled, encountering oil‐filled sandstone reservoirs at several levels. Cuttings samples were collected from the well between depths of 532 and 1146 m and were analysed for their content of total organic carbon (TOC, wt%), total carbon (TC, wt%) and total sulphur (TS, wt%); the petroleum generation potential was determined by Rock‐Eval pyrolysis. Organic petrography was performed in order to determine qualitatively the organic composition of selected samples, and the thermal maturity of the rocks was established by vitrinite reflectance (VR) measurements in oil immersion. The TOC content ranges from 0.75 to 2.22 wt% with an average of 1.43 wt%. The TS content is variable with values ranging from 0.12 to 0.63 wt%. Rock‐Eval derived S1 and S2 yields range from 0.01–0.20 mg HC/g rock and 1.41–9.51 mg HC/g rock, respectively. The HI values range from 140 to 428 mg HC/g TOC, but the majority of the samples have HI values >200 mg HC/g TOC and about one‐third of the samples have HI values above 300 mg HC/g TOC. The drilled section thus possesses a fair to good potential for mixed oil/gas and oil generation. On an HI/Tmax diagram, the organic matter is classified as Type II and III kerogen. The organic matter consists mainly of telalginite (Botryococcus‐type), lamalginite, fluorescing amorphous organic matter (AOM) and liptodetrinite which combined with various TS‐plots suggest deposition in a freshwater lacustrine environment with mild oxidising conditions. Tmax values range from 419 to 436°C, averaging 429°C, and VR values range from ~0.38 to 0.66% R0, indicating that the drilled source rocks are thermally immature with respect to petroleum generation. The encountered oils were thus generated by more deeply buried source rocks.  相似文献   

11.
The Lower Miocene Jeribe Formation in northern and NE Iraq is composed principally of dolomitic limestones with typical porosity in the range of 10–24% and mean permeability of 30 mD. The formation serves as a reservoir for oil and gas at the East Baghdad field, gas at Mansuriya, Khashim Ahmar, Pulkhana and Chia Surkh fields, and oil at Injana, Gillabat, Qumar and Jambur. A regional seal is provided by the anhydrites of the Lower Fars (Fat'ha) Formation. For this study, oil samples from the Jeribe Formation at Jambur oilfield, Oligocene Baba Formation at Baba Dome (Kirkuk field) and Late Cretaceous Tanuma and Khasib Formations at East Baghdad field were analysed in order to investigate their genetic relationships. Graphical presentation of the analytical results (including plots of pristane/nC17 versus phytane/nCl8, triangular plots of steranes, tricyclic terpane scatter plots, and graphs of pristanelphytane versus carbon isotope ratio) indicated that the oils belong to a single oil family and are derived from kerogen Types II and III. The oils have undergone minor biodegradation and are of high maturity. They were derived from marine organic matter deposited with carbonate‐rich source rocks in suboxic‐anoxic settings. A range of biomarker ratios and parameters including a C28/ C29 sterane ratio of 0.9, an oleanane index of 0.2 and low tricyclic terpane values indicate a Late Jurassic or Early Cretaceous age for the source rocks, and this age is consistent with palynomorph analyses. Potential source rocks are present in the Upper Jurassic – Lower Cretaceous Chia Gara Formation and the Middle Jurassic Sargelu Formation at the Jambur, Pulkhana, Qumar and Mansuriya fields; minor source rock intervals occur in the Balambo and Sarmord Formations. Hydrocarbon generation and expulsion from the Chia Gara Formation was indicated by pyrolysate organic matter, palynofacies type (A), and the maturity of Gleichenidites spores. Oil migration from the Chia Gara Formation source rocks (and minor oil migration from the Sargelu Formation) into the Jeribe Formation reservoirs took place along steeply‐dipping faults which are observed on seismic sections and which cut through the Upper Jurassic Gotnia Anhydrite seal. Migration is confirmed by the presence of asphalt residues in the Upper Cretaceous Shiranish Formation and by a high migration index (Rock Eval SI / TOC) in the Chia Gara Formation. These processes and elements together form a Jurassic/Cretaceous – Tertiary petroleum system whose top‐seal is the Lower Fars (Fat'ha) Formation anhydrite.  相似文献   

12.
Samples of Turonian – upper Campanian fine‐grained carbonates (marls, mud‐ to wackestones; n = 212) from four boreholes near Chekka, northern Lebanon, were analysed to assess their organic matter quantity and quality, and to interpret their depositional environment. Total organic carbon (TOC), total inorganic carbon and total sulphur contents were measured in all samples. A selection of samples were then analysed in more detail using Rock‐Eval pyrolysis, maceral analyses, gas chromatography – flame ionization detection (GC‐FID), and gas chromatography – mass spectrometry (GC‐MS) on aliphatic hydrocarbon extracts. TOC measurements and Rock‐Eval pyrolysis indicated the very good source rock potential of a ca. 150 m thick interval within the upper Santonian – upper Campanian succession intercepted by the investigated boreholes, in which samples had average TOC values of 2 wt % and Hydrogen Index values of 510 mgHC/gTOC. The dominance of alginite macerals relative to terrestrial macerals, the composition of C27–C29 regular steranes, the elevated C31 22R homohopane / C30 hopane ratio (> 0.25), the low terrigenous / aquatic ratio of n‐alkanes, as well as δ13Corg values between ?29‰ and ?27‰ together suggest a marine depositional environment and a mainly algal / phytoplanktonic source of organic matter. Redox sensitive geochemical parameters indicate mainly dysoxic depositional conditions. The samples have high Hydrogen Index values (413–610 mg/g TOC) which indicate oil‐prone Type II kerogen. Tmax values (414 – 432°C) are consistent with other maturity parameters such as vitrinite reflectance (0.25–0.4% VRr) as well as sterane and hopane isomerisation ratios, and indicate that the organic matter is thermally immature and has not reached the oil window. This study contributes to the relatively scarce geochemical information for the eastern margin of the Levant Basin, but extrapolation of the data to offshore areas remains uncertain.  相似文献   

13.
Coals and coaly mudstones of the Cretaceous Atane Formation are exposed along the north coast of the island of Disko and the south coast of Nuussuaq peninsula, West Greenland. Numerous oil seepages have been found in the region, but the so‐called Kuugannguaq oil type only occurs at the north coast of Disko. The oil is presumed to have been generated from coaly (Type III) source rocks in the Vaigat strait where the Atane Formation is thermally mature due to deep burial. The exposed coals and coaly mudstones may thus be thermally immature equivalents of the active source rocks. The exposed section at Qullissat on the island of Disko is composed of four sedimentary facies associations: delta plain, distributary channel, delta front, and transgressive sand sheet. Samples of coals and coaly mudstones from the delta plain association were analysed for their total organic carbon (wt % TOC) and total sulphur (wt % TS) contents, and their source rock potential was determined by Rock‐Eval pyrolysis. The organic matter composition was analysed by reflected light microscopy and the thermal maturity was established by vitrinite reflectance measurements. The Qullissat samples were supplemented with source rock screening data from coals and coaly mudstones from the Atane Formation at Paatuut on the south coast of Nuussuaq. The coals and coaly mudstones from Qullissat are dominated by huminite, but several samples have a considerable content of inertinite. The mineral content is high in some samples. Inundations of the peat‐mires may have been quite frequent resulting in the formation of the coaly mudstones. TS contents (0.13–8.97 wt %) and the presence of framboidal pyrite suggest that the precursor peats were influenced by seawater, and that peat formation probably occurred during rises in relative sea‐level. The organic matter is thermally immature, and a constructed vitrinite reflectance gradient for the region suggests that the Qullissat section prior to exhumation was buried to 1,500–1,600 m depth. Hydrogen Index (HI) values from both Qullissat and Paatuut are generally low; estimated maximum HI values for three Qullissat coals yield values of 140–190 mg HC/g TOC. The coals are gas‐prone and only marginally oil‐prone, and may in addition possess a limited oil expulsion efficiency. The effective oil window extends from approximately 1.0–1.6%Ro and the start of the effective oil window is located at about 3,000 m depth. Very thick sedimentary successions in the Vaigat strait indicate that such burial depths have been reached for the Atane Formation offshore, and up‐dip migration of hydrocarbons from these source rocks may have generated the Kuugannguaq oil seepage.  相似文献   

14.
Marine shale samples from the Cretaceous (Albian‐Campanian) Napo Formation (n = 26) from six wells in the eastern Oriente Basin of Ecuador were analysed to evaluate their organic geochemical characteristics and petroleum generation potential. Geochemical analyses included measurements of total organic carbon (TOC) content, Rock‐Eval pyrolysis, pyrolysis — gas chromatography (Py—GC), gas chromatography — mass‐spectrometry (GC—MS), biomarker distributions and kerogen analysis by optical microscopy. Hydrocarbon accumulations in the eastern Oriente Basin are attributable to a single petroleum system, and oil and gas generated by Upper Cretaceous source rocks is trapped in reservoirs ranging in age from Early Cretaceous to Eocene. The shale samples analysed for this study came from the upper part of the Napo Formation T member (“Upper T”), the overlying B limestone, and the lower part of the U member (“Lower U”).The samples are rich in amorphous organic matter with TOC contents in the range 0.71–5.97 wt% and Rock‐Eval Tmax values of 427–446°C. Kerogen in the B Limestone shales is oil‐prone Type II with δ13C of ?27.19 to ?27.45‰; whereas the Upper T and Lower U member samples contain Type II–III kerogen mixed with Type III (δ13C > ?26.30‰). The hydrocarbon yield (S2) ranges from 0.68 to 40.92 mg HC/g rock (average: 12.61 mg HC/g rock). Hydrogen index (HI) values are 427–693 mg HC/g TOC for the B limestone samples, and 68–448 mg HC/g TOC for the Lower U and Upper T samples. The mean vitrinite reflectance is 0.56–0.79% R0 for the B limestone samples and 0.40–0.60% R0 for the Lower U and Upper T samples, indicating early to mid oil window maturity for the former and immature to early maturity for the latter. Microscopy shows that the shales studied contain abundant organic matter which is mainly amorphous or alginite of marine origin. Extracts of shale samples from the B limestone are characterized by low to medium molecular weight compounds (n‐C14 to n‐C20) and have a low Pr/Ph ratio (≈ 1.0), high phytane/n‐C18 ratio (1.01–1.29), and dominant C27 regular steranes. These biomarker parameters and the abundant amorphous organic matter indicate that the organic matter was derived from marine algal material and was deposited under anoxic conditions. By contrast, the extracts from the Lower U and Upper T shales contain medium to high molecular weight compounds (n‐C25 to n‐C31) and have a high Pr/ Ph ratio (>3.0), low phytane/n‐C18 ratio (0.45–0.80) with dominant C29 regular steranes, consistent with an origin from terrigenous higher plant material mixed with marine algae deposited under suboxic conditions. This is also indicated by the presence of mixed amorphous and structured organic matter. This new geochemical data suggests that the analysed shales from the Napo Formation, especially the shales from the B limestone which contain Type II kerogen, have significant hydrocarbon potential in the eastern part of the Oriente Basin. The data may help to explain the distribution of hydrocarbon reserves in the east of the Oriente Basin, and also assist with the prediction of non‐structural traps.  相似文献   

15.
Potential source rocks from wells in the Termit Basin, eastern Republic of Niger, have been analysed using standard organic geochemical techniques. Samples included organic‐rich shales of Oligocene, Eocene, Paleocene, Maastrichtian, Campanian and Santonian ages. TOC contents of up to 20.26%, Rock Eval S2 values of up to 55.35 mg HC/g rock and HI values of up to 562 mg HC/g TOC suggest that most of the samples analysed have significant oil‐generating potential. Kerogen is predominantly Types II, III and II–III. Biomarker distributions were determined for selected samples. Gas chromatograms are characterized by a predominance of C17– C21 and C27– C29 n‐alkanes. Hopane distributions are characterized by 22S/(22S+22R) ratios for C32 homohopanes ranging from 0.31 to 0.59. Gammacerane was present in Maastrichtian‐Campanian and Santonian samples. Sterane distributions are dominated by C29 steranes which are higher than C27 and C28 homologues. Biomarker characteristics were combined with other geochemical parameters to interpret the oil‐generating potential of the samples, their probable depositional environments and their thermal maturity. Results indicate that the samples were in general deposited in marine to lacustrine environments and contain varying amounts of higher plant or bacterial organic matter. Thermal maturity varies from immature to the main oil generation phase. The results of this study will contribute to an improved understanding of the origin of the hydrocarbons which have been discovered in Niger, Chad and other rift basins in the Central African Rift System.  相似文献   

16.
This study presents an organic geochemical characterization of heavy and liquid oils from Cretaceous and Cenozoic reservoir rocks in the Tiple and Caracara blocks in the eastern Llanos Basin, Colombia. Samples of heavy oil were recovered from the Upper Eocene Mirador Formation and the C7 interval of the Oligocene – Miocene Carbonera Formation; the liquid oils came from these intervals and from the Cretaceous Guadalupe, Une and Gachetá Formations. The heavy oil and most of the liquid oils probably originated from multiple source rocks or source facies, and showed evidence of biodegradation as suggested by the coexistence of n‐alkanes and 25‐norhopanes. The results indicate a close genetic relationship between the samples in the Carbonera (C7 interval), Mirador and Guadalupe Formation reservoirs. These petroleums are interpreted to result from at least two separate oil charges. An early charge (Oligocene to Early Miocene) was derived from marine carbonate and transitional siliciclastic Cretaceous source rocks as indicated by biomarker analysis using GC/MS. This initial oil charge was biodegraded in the reservoir, and was mixed with a later charge (or charges) of fresh oil during the Late Miocene to Pliocene. A relatively high proportion of the unaltered oil charge was recorded for heavy oil samples from the Melero‐1 well in the Tiple block, and is inferred to originate from Cenozoic carbonaceous shale or coaly source rocks. Geochemical parameters suggest that oils from the Gachetá and Une Formations are similar and that they originated from a source different to that of the other oil samples. These two oils do not correlate well with extracts from transitional siliciclastic source rock from the Upper Cretaceous Gachetá Formation in the Ramiriqui‐1 well, located in the LLA 22 block to the north. By contrast, one or more organofacies of the Gachetá Formation may have generated the heavy oil and most of the liquid oil samples. The results suggest that the heavy oils may have formed as a result of biodegradation at the palaeo oil‐water contact, although deasphalting cannot entirely be dismissed.  相似文献   

17.
Regression lines obtained from TOC versus S 2 graphs of organic rich samples were collected from Rahmi, West Bakr, Ras Gharib, and Esh El Melleha wells in the Gulf of Suez. By applying the hydrogen index values obtained from S 2 versus TOC graph and mass balance calculations obtained from the results of Rock-Eval pyrolysis, the original hydrocarbon generative capacity and the amounts of the hydrocarbons generated are estimated. Calculation results indicate that the amounts of original hydrocarbons and the hydrocarbon generative capacities of the two methods are similar and correlated with the results of the Rock-Eval pyrolysis. This indicates that such calculations can be applied in the hydrocarbons evaluation of source rocks.  相似文献   

18.
This paper investigates the filling history of the Skrugard and Havis structures of the Johan Castberg field in the Polheim Sub‐Platform and Bjørnøyrenna Fault Complex, Barents Sea (Arctic Norway). Oil and gas occurs in the Early Jurassic and Middle Jurassic Nordmela and Stø Formations at Johan Castberg, and both free oil and bitumen are interpreted to be sourced from the Upper Jurassic Hekkingen Formation (Kimmeridge Formation equivalent). The geochemical characteristics of the petroleum from Skrugard and Havis, including the GOR, API and facies and maturity signatures, can be understood within a complex fill history which includes a palaeo oil charge, Tertiary uplift (>2 km), dismigration, in‐reservoir biodegradation, and late‐stage refill with gas. The API and GOR of the Skrugard oil are 31° and 60m3/m3, respectively. The petroleum is geochemically similar to that in the nearby Havis structure, to that in the Snøhvit region to the south of the Loppa High, and also to the petroleum recorded as traces in well 7219/9‐1, approximately 16 km SW of Johan Castberg field. However, the petroleum differs from the oil in the Alta well 7120/2‐1, located in the southern part of the Loppa High, illustrating the complexity of the regional petroleum systems. The Skrugard oil is of medium maturity (ca. 0.8–0.9% Rc), and is significantly biodegraded despite being gas‐saturated. Evidence for biodegradation includes the reduced concentrations of C10‐C25 n‐alkanes and the presence of a prominent unresolved complex mixture (UCM) in gas chromatogram traces. However non‐biodegraded C4‐C8 range hydrocarbons are also present in the reservoir. This suggests a recent charge of gas/condensate into the structure which therefore contains a mixture of palaeo‐degraded and unaltered petroleum. Oil‐type inclusions within authigenic quartz and feldspar from reservoir sandstones at Skrugard were analysed. The results indicate that the structure (present‐day depth 1276–1395m) underwent Tertiary uplift by ca. 2–3km following an earlier phase of oil emplacement. The presence of the oil type inclusions, both in the current gas zone (Stø Formation) and in the oil zone (Stø and Nordmela Formations), indicates that the positions of the oil‐water and gas‐oil contacts have changed over time. This is consistent with a recent gas charge to the upper part of the reservoir, and also with the gas being at dew point. These observations are supported by analyses of core extracts which show an increasing bitumen content towards the OWC, and the oil‐type bitumen in the present‐day gas zone. A charge history model for the Skrugard structure is proposed which integrates both the observations concerning the petroleum inclusions and the biodegraded oil together with observations of seismically‐monitored gas fluxes along the rim of the Loppa High. Improved understanding of the Skrugard structure and its filling history will assist exploration in similar settings in other parts of the Barents Sea and worldwide, particularly where multiple source rocks and a multi‐stage charge history have controlled reservoir filling.  相似文献   

19.
The authors present the hydrocarbon source rock potential and reservoir properties of the Eocene Formations in the Central Anatolian Kozakl? Basin. Potential source and reservoir rocks in the Kozakl? basin include transgressive-regressive bank carbonates, fore-bank, deep-marine shales and sandstones, and coal and bituminous facies. The organic geochemical data of the Middle Eocene shales (Sar?lar Formation) show that inadequate to marginal source rock qualities, and marginally mature to overmature characteristics, resulting from heat flow regime of the studied area. Alemli Member of the ?ncik Formation is good to excellent according to TOC wt% and immature to mature source rock from Tmax values. Sedimentological features and age data indicate that the Uzunlu Formation was deposited under the control of antecedent topography. Reservoir properties of the Uzunlu Formation and Keklicek member indicate that the carbonate unit is not adequate for reservoir rock. However, siliciclastics of the Sar?lar Formation could be reservoir potential due to its high porosity and permeability values.  相似文献   

20.
The depositional environment and hydrocarbon source rock potential of Cenomanian-Turonian black shales of the Dereköy and Ballik Formations in SW Turkey were investigated by organic geochemical methods. In detail, 33 samples from three section of the Dereköy Formation, and 15 samples from one section of the Ballik Formation were analysed for elemental (TOC, Rock -Eval pyrolysis), C15+-lipid and biomarker compositions. Based on maximum pyrolysis degradation temperatures of not more than 420°C, all the shale samples are classified as immature, corresponding to a vitrinite reflectance of less than 0.45% Rr and a lignite to sub-bituminous coal stage. This is confirmed by relatively high isoprenoid to n-alkane ratios as well as by high biomarker contents. According to this maturity stage, and both total organic carbon contents of 6–41% and hydrogen indices of 255–708 mg HC/g TOC, the Cenomanian-Turonian black shales exhibit fair to excellent source rock potential with mixed Type II and Type I kerogen. Relatively high isoprenoid to n-alkane ratios may indicate at least partial (bio-) degradation/evaporation/waterwashing and selective modification of the lipid composition due to the nature of the outcrop. However, very similar unimodal n-alkane distributions in the gas chromatograms of four selected shale samples, with a predominance in the C16 to C17 region, clearly point to a significant contribution of algal and/or bacterial type organic matter with low terrigenous organic input. C27, C28 and C29 steranes in shales from both formations have similar distributions (C29>C27>C28). High C31 R homohopane / C30 hopane ratios indicate a marine depositional environment. This is confirmed by the presence of gammacerane in all the black shales investigated which in general indicates salinity. Pregnanes in one sample (BA-6) may point to hypersaline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号