首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
LNG接收站BOG处理工艺优化——以青岛LNG接收站为例   总被引:2,自引:0,他引:2  
蒸发气(Boil Off Gas,缩写为BOG)的处理是LNG接收站必须考虑的关键问题之一,关系着LNG接收站的能耗及安全、平稳运行。为此,介绍了LNG接收站BOG处理的4种工艺:①BOG直接压缩工艺;②BOG再冷凝液化工艺;③BOG间接热交换再液化工艺;④蓄冷式BOG再液化工艺。运用HYSYS软件建立了采用不同BOG处理工艺的LNG接收站模型,对比了目前主要采用的BOG直接压缩工艺和再冷凝液化工艺在工艺流程及能耗方面的差异,并分析了外输量、外输压力及再冷凝器压力对BOG处理工艺节能效果的影响,在此基础上提出了BOG再冷凝液化工艺的改进措施——BOG进入再冷凝器前进行预冷,可比原工艺节约18.2%的能耗。同时还针对青岛LNG接收站提出了BOG再冷凝液化及直接压缩工艺混合使用的优化运行方案,可使进入再冷凝器的LNG流量保持恒定,没被冷凝的BOG经过高压压缩机提压到外输压力,与完成气化的LNG混合后外输,可避免BOG进入火炬系统而造成的能源浪费,同时减小再冷凝器入口流量的波动,使装置运行更稳定、更经济。  相似文献   

2.
针对国内某一LNG接收站再冷凝工艺存在能耗大、回收率低、稳定性差等问题,提出了预冷式-二级压缩BOG再冷凝工艺:利用高压泵出口LNG预冷一级压缩机出口BOG,降低工艺物料比;通过二级压缩减小压缩机进出口BOG比焓差,降低压缩机能耗;新增再冷凝器和稳压泵,利于减小高压泵运行波动。使用ASPEN-HYSYS模拟接收站再冷凝工艺流程,以该接收站典型工况BOG产量7 640 kg/h,LNG外输量180 t/h为例,新工艺节能8. 26%,并且随着BOG产量增加,节能效果上升,最大节能14. 04%。新工艺提高了接收站经济性和安全性,为再冷凝工艺选择提供参考。  相似文献   

3.
为了解决LNG接收站在低输量工况下闪蒸气(Boil-Off Gas,以下简称BOG)回收不完全的问题,在不增加冷凝工艺复杂性的前提下,基于现有设备的实际工况及工艺流程,以热力学原理、静态仿真计算结果为依据,在传统的蓄冷式BOG冷凝方案的基础上,结合LNG冷能利用方式,提出了一种基于LNG接收站制氮系统的蓄冷回收BOG新工艺,并进行了BOG温度、冷凝器入口压力、LNG组分等参数的敏感性分析,明确了新工艺的适用条件。运用效果表明:(1)新工艺充分利用了LNG接收站的现有设备,每年可为LNG接收站节能创收近160万元;(2)新工艺可实现高负荷下的BOG冷凝,其冷凝外输工艺可作为辅助冷凝工艺,冷凝回罐工艺可作为应急工艺——液氮用于蓄冷、气氮用于吹扫,可满足接收站的多种需求;(3)较之于前人提出的4种BOG处理工艺(多级压缩、级间冷却、预冷和透平回收轴功),新工艺在对外输量的依赖性、流程安全性及操作性等方面均有优势。结论认为:新工艺在设备投资、能耗、工艺安全性及经济效益上都具有明显的优势,值得推广应用。  相似文献   

4.
为对LNG接收站生成的BOG进行外输处理以降低储罐压力确保其安全运行,介绍了LNG接收站BOG产生的原因并计算出各种情况下BOG的产生量,以此为基础探讨了LNG接收站间断外输期间进行BOG外输处理控制储罐压力的不同方式。通过对比BOG高低压外输、再冷凝高低压外输和BOG通过火炬及安全阀放空几种控制方式的能耗,结合现阶段接收站间断外输的实际工况,分析得出使用BOG再冷凝低压外输工艺为目前工况下的最佳控制处理方式。  相似文献   

5.
LNG接收站BOG气体回收工艺改进与能耗分析   总被引:1,自引:0,他引:1  
向丽君  全日  邱奎  王孝科 《天然气化工》2012,37(3):48-50,57
对LNG(液化天然气)接收站BOG(蒸发气)气体主要的两种不同回收方式,即再冷凝工艺和直接压缩工艺进行了能耗分析,指出再冷凝工艺更为节能;以进一步节省工艺能耗为目的,对现有BOG再冷凝工艺进行了优化。运用ASPEN流程模拟软件对BOG压缩机进出口压力、BOG温度及物料比等影响BOG再冷凝工艺能耗的运行参数的分析,提出了利用高压LNG对增压后的BOG进行预冷,降低物料比从而降低BOG压缩机能耗的工艺流程。优化后的BOG再冷凝工艺节能效果显著,较原工艺可节约BOG压缩机能量消耗31.4%。  相似文献   

6.
LNG接收站BOG再冷凝系统操作参数优化   总被引:2,自引:0,他引:2  
目前国内大多数LNG接收站的BOG蒸发气采用BOG再冷凝工艺。针对BOG再冷凝系统的操作参数对其物料比和能耗产生影响的问题,运用HYSYS对江苏LNG接收站内设计工况下的运行参数进行工艺模拟。在此基础上,单一改变压缩机和低压泵出口压力,用模拟的实际结果绘制变化趋势图,分析相关操作参数对再冷凝系统工艺和各增压设备功耗的影响以及参数变化趋势的主要原因。在满足工艺要求和最小外输量的前提下,通过合理降低BOG再冷凝器的操作压力,定量地确定了基于江苏LNG接收站再冷凝器操作压力的理论最小值为590 k Pa.a,使站内增压设备功耗最大节省了4.68%,效益可观。同时,明确了大量论文中关于再冷凝器操作压力为0.6~0.9 MPa.a的模糊论述,为其他LNG接收站再冷凝器操作压力的合理选定提供参考依据。  相似文献   

7.
LNG接收站BOG处理技术优化   总被引:2,自引:0,他引:2  
LNG接收站BOG处理工艺分再冷凝和高压压缩两种,均有其不足。就再冷凝工艺而言,接收站无外输时BOG只能采取放空或火炬燃烧等措施进行处理;就高压压缩工艺而言,接收站外输期时无法回收LNG的冷能。为此,分别采用静态模型、动态模型等计算方法分别计算无外输期和有外输期间最大BOG产生量,弄清各种工况下BOG的产生量。在此基础上,从BOG产生的机理出发,分析降低接收站产生BOG的措施。结果表明,优化BOG压缩机组合可有效回收产生的BOG。建议在接收站设计、建设过程中,应综合考虑再冷凝工艺和直接压缩机工艺,采取措施降低BOG的产生,实现BOG的有效回收利用。  相似文献   

8.
随着我国天然气行业的发展,越来越多的LNG接收站兴建起来。由于LNG的特殊性,生产运营过程中不可避免地将产生BOG。为了给LNG接收站选择合适的BOG处理工艺,分析现行的BOG直接输出和再冷凝工艺,着重从装置构成、能耗和运营成本等方面对比BOG再液化和CNG外输两种工艺,结果表明,BOG再液化投资、能耗较高,但与CNG相比仍然具有优势。同时,对现有BOG再液化工艺流程进行优化,使BOG经再液化压缩机升压后既能进行再液化回收,也能直接外输进入管网。该研究可为新建LNG接收站的BOG处理工艺选型提供参考。  相似文献   

9.
《石油化工应用》2016,(6):130-134
BOG再冷凝处理工艺是LNG接收站的主要流程之一,利用ASPEN HYSYS流程模拟软件对BOG再冷凝工艺流程进行了模拟,并对影响再冷凝工艺的因素进行了分析,继而提出利用过冷的LNG对BOG气体进行预冷,通过减小物料比,最终达到降低BOG压缩机功耗的目的。利用HYSYS对优化后的流程进行模拟,发现优化后的再冷凝工艺BOG压缩机功耗降低了49.6 k W,节约功耗20.3%。  相似文献   

10.
李宁 《天然气化工》2020,(1):57-60,84
为探究LNG接收站BOG处理方式的原理,对几种常见的BOG处理方式进行了总结,分析了再冷凝法、加压外输法、压缩为CNG三种方式的原理、优缺点和适用条件,并通过软件模拟了接收站的BOG再冷凝处理工艺,对模拟流程进行了简要分析,得出了冷凝一定量BOG所需的最小LNG流量。  相似文献   

11.
LNG接收站工艺流程模拟计算   总被引:1,自引:0,他引:1  
采用软件对LNG接收站工艺流程进行静态模拟计算是LNG接收站工艺设计最重要的工作之一。采用HYSYS软件建立模型并开展研究,分析了影响模拟结果准确性的关键因素。根据所得结果,认为在某一假设参数条件下LNG接收站在零气态外输、卸船、无槽车槽船外输的工况的BOG量最大;在最大气态外输、装车、装船工况下低压外输负荷最大;采用中/高压BOG压缩机直接外输与再冷凝工艺相结合的BOG处理工艺有利于在气态外输和液态外输量较小的工况下减少放空。  相似文献   

12.
随着环境保护的需要和能源的日益紧张,国内液化天然气(LNG)行业发展速度越来越快.LNG气化产生蒸发气(BOG),若不对其进行处理,可能造成接收站超压继而引发事故;若对其直接放空至火炬燃烧,则不仅浪费了能源,同时又污染了环境.因此,BOG回收工艺成为LNG接收站的重要组成部分.BOG回收处理方法主要有2大类,即加压外输方法和再液化方法.由于不同规模的LNG接收站产生的BOG蒸发量不同,致使各LNG接收站的BOG回收工艺各不相同,本文主要针对直接压缩工艺、再冷凝液化工艺、直接压缩+再冷凝工艺、氮膨胀制冷液化工艺、混合冷剂制冷液化工艺、液氮(或丙烷)制冷液化工艺、蓄冷式再液化工艺7种BOG回收技术的适用条件、工艺流程及优缺点进行评述,并提出有针对性的优化建议.  相似文献   

13.
分析了液化天然气(LNG)接收站蒸发气(BOG)的来源,对BOG需处理量进行了计算,得出:在卸船工况及非卸船工况下的BOG需处理量分别为15.837 t/h和2.863 t/h。研究了BOG处理系统的组成和再冷凝工艺,通过提高再冷凝换热效率、将低压BOG直接外输、控制储罐压力等方式,对再冷凝工艺及BOG处理系统进行了优化。分析了进入再冷凝器的BOG所需的LNG量、再冷凝器液位、再冷凝器顶部及底部压力等参数。利用调节器调整进入再冷凝器的LNG流量;通过调节阀门PV02A/B的开度控制再冷凝器底部压力;通过调节BOG压缩机负荷调整再冷凝器液位,实现液位控制的优化。  相似文献   

14.
随着环境保护的需要和能源的日益紧张,国内液化天然气(LNG)行业发展速度越来越快.LNG气化产生蒸发气(BOG),若不对其进行处理,可能造成接收站超压继而引发事故;若对其直接放空至火炬燃烧,则不仅浪费了能源,同时又污染了环境.因此,BOG回收工艺成为LNG接收站的重要组成部分.BOG回收处理方法主要有2大类,即加压外输方法和再液化方法.由于不同规模的LNG接收站产生的BOG蒸发量不同,致使各LNG接收站的BOG回收工艺各不相同,本文主要针对直接压缩工艺、再冷凝液化工艺、直接压缩+再冷凝工艺、氮膨胀制冷液化工艺、混合冷剂制冷液化工艺、液氮(或丙烷)制冷液化工艺、蓄冷式再液化工艺7种BOG回收技术的适用条件、工艺流程及优缺点进行评述,并提出有针对性的优化建议.  相似文献   

15.
我国华北地区天然气季节性峰谷差较大,受LNG接收站最低外输气量制约,天然气管网夏季出现逆调峰;进口LNG购销价格倒挂,公司经营压力增大。通过TS-LNG接收站投运BOG(Boil Off Gas)增压外输工艺,结合再冷凝方式,解决逆调峰问题,提高管网调峰弹性和灵活度,利于天然气管网输送和销售综合效益最大化,促进天然气市场化改革进程。  相似文献   

16.
一般LNG接收站产生的BOG中含有大量的氮气,热值低,若直接压缩成CNG则严重影响汽车的动力性能;若利用再冷凝工艺采用低温BOG压缩机,因低温BOG压缩机太昂贵,对于小型LNG接收站来说不经济。为此提出一种常温压缩再冷凝的BOG回收工艺,即先将BOG加热到常温再增压,自身预冷回收冷量后再和增压后的过冷LNG混合液化,即可得到合格的LNG,其氮气、甲烷含量和热值均满足要求。通过HYSYS软件模拟,证明采用这种工艺流程完全可以回收一些小型LNG接收站产生的BOG,避免了BOG资源的浪费。  相似文献   

17.
〗LNG接收站的最大/最小外输量是其最重要的生产运行参数,最大外输量的确定应保证白天满足天然气管网最高峰时的用气需求,而最小外输量的确定则仅保证满足LNG接收站最低运行条件即可。为此,分析了罐内低压泵、再冷凝器、高压泵及气化器这4类设备的运行能力对确定LNG接收站最大/最小外输量的影响,明确了LNG接收站最小外输量的确定分允许火炬燃烧及不允许火炬燃烧2种计算工况:①在允许火炬燃烧并保证全厂各有1台主工艺设备运转的前提下,决定LNG接收站最小外输量的关键设备为高压泵的最小流量;②在不允许火炬燃烧并保证全厂各有1台主工艺设备运转的前提下,决定LNG接收站最小外输量的关键设备为冷凝BOG需要的LNG量。据此,得出浙江LNG接收站最大外输量为950 000 m3/h;在允许火炬燃烧的情况下,其最小外输量为75 331 m3/h;在不允许火炬燃烧的情况下,其最小外输量为302 601 m3/h。  相似文献   

18.
《天然气化工》2019,(6):86-92
针对青岛LNG接收站BOG处理过程中LNG提供冷量不足引起管道振动、阀门异常现象进行优化模拟研究。基于青岛LNG接收站BOG处理单元实际运行工艺,以Aspen HYSYS流程模拟软件为研究手段对各问题现象点进行分析研究,建立符合实际流程的LNG接收站稳态模型,寻找关键工艺节点,以各设备安全运行的同时降低能耗为目标,对卸船与非卸船两种工况下的各节点进行可操作参数优化研究,得出不同BOG产生量下各节点对应的最小LNG冷凝需求量。同时对不同设备所需的LNG冷凝量变化进行对比分析,得出相应的敏感性大小。所得结果可为现场实际生产运行提供理论参考。  相似文献   

19.
在LNG接收站开车、运行过程中,BOG管网进液可能导致BOG再冷凝系统停车、LNG储罐超压损坏、火炬火雨等严重后果。对LNG接收站BOG管网的潜在进液点进行了分析,讨论了进液危害及应对措施,并从设计、操作管理等方面提出优化措施,为LNG接收站工程设计、开车预冷、运维等提供参考和实践指导。  相似文献   

20.
国内已建液化天然气(LNG)接收站采用蒸发气(BOG)再冷凝工艺回收BOG,但是再冷凝器作为BOG回收系统的核心设备,存在操作难度大、稳定性低等问题。通过对LNG接收站项目BOG回收系统的介绍,分析了再冷凝器流量、液位、压力控制系统方案,针对接收站操作过程中对再冷凝器造成的干扰问题,提出了解决办法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号