首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
胜利油田单六块超稠油乳化降粘室内实验研究   总被引:2,自引:0,他引:2  
在实验室评价了质量比7/3的阴离子/非离子混合表面活性剂降粘剂SB 3(有效物含量≥30%)对胜利滨南油田单6断块蒸汽吞吐井超稠油井筒乳化降粘的性能。所用油样为脱气脱水单6 12 X42井原油,在10s-1下50℃粘度为6.4×104mPa·s,60℃粘度为3.3×104mPa·s;水相为模拟地层水,含NaCl1.5×104mg/L,Ca2+800mg/L,Mg2+200mg/L及设定量SB 3。实验研究结果表明:体积比为90/10~50/50的原油和水在60℃时形成油包水乳状液,其粘度较原油大幅上升;在水相中加入2.0×104mg/LSB 3后,相同体积比的原油和水在60℃时形成水包油乳状液,60℃、50s-1下乳状液粘度为260mPa·s(油水体积比70/30)和~130mPa·s(60/40);温度由35℃升到80℃时,油水体积比70/30的乳状液的粘度(50s-1)由579mPa·s降至65mPa·s;SB 3加量增大时(≤5.0×104mg/L)乳状粘度还会降低;SB 3不影响稠油乳状液的化学破乳脱水。因此,SB 3可用于胜利滨南油田单6断块超稠油的井筒乳化降粘。图3表4参3。  相似文献   

2.
胜利油田陈371区块高钙镁油藏稠油降粘剂研究   总被引:1,自引:0,他引:1  
陈 371块稠油油藏温度约 6 5℃ ,所产原油粘度高 (6 5℃下 8.6Pa·s,5 0℃下 44Pa·s) ,胶质和沥青质含量高 ,地层水矿化度高 (~ 1.5× 10 4 mg/L) ,Ca2 + 、Mg2 + 含量高 (376 ,173mg/L) ,6 0℃时实验原油在含水率 36 .7%时发生乳状液转相。在 6 0℃、油水体积比 7∶3条件下考察了影响降粘剂ONS 1(一种阴离子表面活性剂 )乳化降粘效果的因素 :水相中NaCl浓度 ,ONS 1浓度 ,Ca2 + 浓度 (固定Mg2 + 浓度 )及增效剂三乙胺浓度 ,在水相中NaCl浓度为1.5× 10 4 ,Ca2 + 浓度为 6 0 0 ,Mg2 + 浓度为 2 0 0mg/L条件下 ,得到ONS 1与三乙胺的适宜质量比约为 10 0∶3。在上述条件下加入ONS 1+三乙胺 (2 .0× 10 4 +6 0 0mg/L)得到的实验原油乳状液 ,1s-1和 5 0s-1下的粘度 ,5 0℃时分别为 111和 41mPa·s,30℃时分别为 311和 12 0mPa·s,在 30~ 6 0℃范围内稠油乳化降粘率大于 99%。在矿化度和Ca2 + 、Mg2 + 含量较低的油田污水中加入ONS 1+三乙胺 (2 .0× 10 4 ~ 3.0× 10 4 +75 0mg/L)使实验原油乳化 ,可得到更好的降粘效果  相似文献   

3.
张勇  杨寨  沈燕来  许明标 《油田化学》2002,19(4):316-318,346
稠油乳化剂HOT RE是一种含有耐盐基团的表面活性剂。在HOT RE室内性能评价中所用的油样为取自绥中 36 1油田的脱气脱水稠油 ,在 4 0℃下粘度为 5 6 .2Pa·s。实验研究结果如下。在含水量由 2 4 %增至 2 8%时稠油乳状液由油包水型转变为水包油型。加入 0 .0 5 %~ 0 .3%NaOH可使油水体积比 70 30的O W型稠油乳状液 4 0℃时的粘度降至数百mPa·s,但水相矿化度为 3.5× 10 4 mg L时则无降粘作用。质量比 1∶1的NaOH +HOT RE在加量为 0 .0 5 %~ 0 .5 %时乳化降粘效果更好 ,但当水相矿化度为 3.5× 10 4 mg L时其有效加量范围减至 0 .4 %~ 0 .6 %。加入 0 .2 %~ 0 .4 %HOT RE的 70 30的O W型稠油乳状液 4 0℃时的粘度为 6 0 0~ 2 70mPa·s,温度 5 0~ 70℃时粘度有所下降 ,水相矿化度≤ 7.0× 10 4 mg L时 4 0℃粘度大体不变。加入HOT RE形成的O W型稠油乳状液用选择适当的破乳剂不难破乳 ,脱水率可高达~ 90 %。在储层岩心流动实验中 ,与海水相比HOT RE水溶液的注入压力较低 ,从油饱和岩心中驱出的油量较多。图 5表 2参 8  相似文献   

4.
报道了乳化降粘剂HP用于塔河油田S6 6井稠油开采的现场试验结果并作了分析。HP的主剂为改性酚醚表面活性剂 ,复配以表面张力改进剂和抗盐聚合物 ,在 80℃下可抗耐矿化离子的浓度高达 2 .2 6× 10 5mg/L(包括Ca2 + +Mg2 + 4 .3× 10 3 mg/L)。S6 6井原油基本不含水 ,含气一般~ 10 % ,5 0℃粘度 9.2Pa·s。该井用掺稀油工艺生产 ,产液量由泵排量决定 ,为~ 6 6m3 /d。在为时 2 2d的现场试验中 ,用矿化度 5 .6× 10 4mg/L、含Ca2 + +Mg2 +4 .3× 10 3 mg/L的井水配制的浓度 4 75 0~ 6 0 0 0m/L的HP溶液从环空连续注入井内 ,油水体积比逐渐由 6 0∶4 0变为 70∶30 ,HP加量以总液量计由 2 2 0 0mg/kg逐渐降至 14 0 0mg/kg。HP加量在 2 2 0 0~ 16 0 0mg/kg范围时 ,产出的O/W乳状液 35~ 36℃下的粘度为 17.5~ 2 0 .0mPa·s ,而掺稀油时产出原油的粘度为 30 0mPa·s。当油水比由 6 0∶4 0变为 70∶30时 ,稠油、气、水的产出量分别由 35 .6t/d ,3.96m3 /d ,2 6 .4t/d变至 4 1.6t/d ,4 .6 2m3 /d ,19.8t/d。在采用掺稀油工艺时 ,稠油和气产出量分别为 2 9.7t/d和 3.30m3 /d ,回采稀油量为 33.0t/d。在现场试验中井口油压略升并大体维持稳定 ,对产生这一现象的原因作了分析。图 1表 3参 1。  相似文献   

5.
烷基酚聚氧乙烯-聚氧丙烯醇醚用于稠油乳化降粘的研究   总被引:5,自引:1,他引:4  
实验原油为胜利某油田高胶质(47.99%)高沥青质(9.13%)、凝点18℃的脱水脱气特稠油,3.4s-1下30℃粘度3.6×105mPa·s,50℃粘度1.6×104mPa·s,给出了粘温曲线。稠油乳化降粘实验条件如下:油水体积比7∶3,温度50℃,水相中烷基酚聚氧乙烯聚氧丙烯醇醚浓度5g/L。实验结果表明:作为稠油乳化降粘剂,该嵌段聚醚在烷基链长为C8~C18时均可使用,C8~C12时效果较好,C9的效果最好,形成的稠油乳状液粘度280mPa·s,稳定时间240min;壬基酚聚氧乙烯聚氧丙烯醇醚(EP EO PO)中EO加成数占EO+PO加成数的50%~95%时,乳状液粘度小于400mPa·s;用Davies法计算的HLB值在13~17时,使用4g/LEP EO PO形成的乳状液粘度小于300mPa·s;在水相中有2.0×104mg/LCa2++Mg2+存在时该乳化降粘剂可耐浓度≤2.0×105mg/L的NaCl;在有8.0×104NaCl和2.0×104mg/LCa2++Mg2+存在下,温度从35℃升高到80℃时,乳状液粘度和稳定时间均下降,90℃时乳状液发生反相,EP EO PO的使用温度为35~80℃。图4表3参4。  相似文献   

6.
辽河超稠油乳化降粘研究   总被引:2,自引:1,他引:1  
为了实现辽河超稠油的常温输送和制备乳化燃料油,用HLB值11.5的非/阴离子表面活性剂及其他助剂,将酸值5.89mgKOH/g、含水9.0%、30℃粘度1415Pa·s的辽河混合超稠油乳化成油水体积比70∶30的水包油乳状液。通过正交设计实验,优选出乳化药剂组成(g/L,以水相计)如下:碱2.0;混合表面活性剂5.0;促进剂1.0;助剂3.0。用该组乳化药剂制备的油水体积比70∶30水包油乳状液,30℃、28.68s-1粘度为40mPa·s,另加入1.0g/L稳定剂可使乳状液粘度降至30mPa·s;如将乳化药剂中混合表面活性剂的HLB值改为11.0,则制得的乳状液粘度升至124mPa·s,其稳定性则增大。这3种水包油乳状液的流变性都比较接近牛顿流体,在20~80℃下表观粘度随剪切速率的变化较小。图4表2参5。  相似文献   

7.
稠油的类乳化复合降粘作用机理   总被引:8,自引:0,他引:8  
周风山  吴瑾光 《油田化学》2002,19(4):311-315
讨论了油水乳状液的粘度与水外相体积分数之间关系的 3种理论公式 (Einstein ,Hatschek ,Richardson公式 )和真实乳状液的各种复杂类型 ,包括极少量水与油形成的核心 环状流。提出在稠油中加入少量的水、油溶性降粘剂、乳化剂 ,使稠油形成油相不易聚结的水外相类乳状液 ,以大大降低稠油粘度的方法并讨论了涉及的机理。将5 0℃、6 3.5s- 1 下粘度 >17.8Pa·s的胜利乐安稠油与加有 0 .1%特制乳化剂、0 .0 5 %油溶性共聚物降粘剂MSA的水在 5 0℃混合 ,油水体积比分别为 8.5∶1.5和 8.0∶2 .0 ,药剂加量以药剂与稠油的质量比表示 ,形成的类乳状液的粘度分别为 6 73.2和 2 4 1.5mPa·s (5 0℃ ,113.5s- 1 ) ,降粘率分别为 96 .6 %和 98.8%。在油水体积比 8.5∶1.5 ,MSA加量 0 .0 5 % ,乳化剂加量 0 .1% ,温度 5 0~ 80℃的条件下 ,用煤油代替水 ,在 <80℃时稠油降粘率均较小 ,且温度越低 ,降粘率差别越大。考察了MSA加量 (0 .0 1%~ 0 .1% )、乳化剂加量 (0 .0 5 %~ 0 .1% )、油水体积比 (8.5∶1.5~ 7.0∶3.0 )、乳化温度 (5 0~ 70℃ )的影响。本方法可用于稠油的井筒降粘开采。图 2表 4参 13。  相似文献   

8.
乳化降粘剂SB-2乳化稠油机理研究   总被引:1,自引:1,他引:0  
实验研究了用表面活性剂SB 2乳化稠油降低粘度的几个机理性问题。SB 2是胜利油田开发的稠油乳化降粘剂 ,为脂肪酸改性的具有多官能团的钠盐型阴离子表面活性剂。根据用duNo櫣y法测定的表面张力曲线 ,SB 2在蒸馏水中的临界胶束浓度为 0 .16 g/L ,在模拟地层水 (TSD =15 .8g/L ,含Ca2 0 .6 g/L ,含镁 0 .2g/L)中的为0 .0 2 4 g/L。产自胜利油田不同区块 7口井、5 0℃粘度为 3.0× 10 3 ~ 3.3× 10 5mPa·s的稠油 ,与浓度 3~ 8g/L的SB 2地层水溶液在油水体积比 7∶3及一定温度 (5 0~ 70℃ ,视井温而定 )时形成粘度 <30 0mPa·s的O/W乳状液 ,稠油粘度较高时所需的SB 2浓度较高。用ESI MS方法测定了在 5 0℃形成的O/W稠油乳状液水相和油相中SB 2浓度 ,得到下述结果 :在相同稠油和油水比条件下 ,SB 2初始浓度较高时 ,乳状液水相和油相中SB 2浓度也较高 ,粘度不同的 2种稠油与同一浓度SB 2地层水溶液形成的乳状液 ,油水比越大 ,油相中SB 2浓度越小 ,水相中SB 2浓度则相同 ,油水比也相同时SB 2在油相中的浓度也相同。用微量热法测定了一种稠油与SB 2地层水溶液乳化时的热效应 ,乳化过程为放热过程 ,乳化热随水相SB 2浓度、油水比和乳化温度增高而增大。图 6表 1参 6。  相似文献   

9.
1 白庙气田概况白庙气田原始天然气地质储量 10 7× 10 8m3 ,凝析油地质储量 15 8× 10 4t,气层埋深 2 6 30~ 4 0 90m ,砂岩气层孔隙度6 1%~ 15 5 % ,其中 84 %的层孔隙小于 15 % ,渗透率 0 1~ 12× 10 -3 μm2 。气藏温度 89 8~ 14 3 0℃ ,压裂系数 0 98~1 75 ,原始地层压力 2 5 74~ 71 38MPa。相对密度 0 5 913~0 6 913,凝析油相对密度 0 73~ 0 82mg/L ,地下粘度 0 5 3~ 8 5 4mPa·s .地层水pH值 5 4~ 6 2 ,相对密度 1 0 5~1 12 ,水型为CaCl2 型 ,总矿化度 6 8~ 17 5× 10 4mg/L。砂岩储层酸敏、水敏、速敏…  相似文献   

10.
用于高含蜡原油的双聚合物降凝剂的研制   总被引:13,自引:0,他引:13  
朱莹  李俊台  马敬环 《油田化学》2002,19(4):319-321
通过在有机溶剂中进行的引发聚合 ,由摩尔比 2∶3∶3的马来酸酐、丙烯酸十八酯、醋酸乙烯酯合成了共聚物降凝剂A ,由摩尔比 1∶2∶3的苯乙烯、马来酸酐、丙烯酸十八酯合成了共聚物降凝剂B。A和B均为质量分数 30 %的溶液。简介了合成方法。A +B组合实验和组合物加量实验结果表明 ,对于密度 86 8.9kg m3、含蜡量 2 6 .6 %的辽河曙光原油 ,质量比 3∶1的A +B的降凝降粘效果最好 ,加入量为 0 .5 %时原油凝点由 2 9℃降至 2 1℃ ,80℃、15 0s- 1下的粘度由 2 0 0 0mPa·s降至 95 0mPa·s,降粘率达 5 2 .5 % ;对于密度 886 .7kg m3、含蜡量 18.9%的吉林新民渣油(原油减压蒸馏釜底残液 ) ,质量比 1∶2的A +B的降凝降粘效果最好 ,加入量为 0 .4 %时渣油凝点由 13℃降至 1.0℃ ,80℃、15 0s- 1 下的粘度由 95 0mPa·s降至 2 6 0mPa·s,降粘率达 72 .6 %。降凝剂A +B加量增大时 ,原油和渣油的凝点、粘度均降低。表 3参 8。  相似文献   

11.
In order to achieve the highly efficient development of heavy oil reservoirs, fatty acid alkanolamide bipolyoxyethylene ether (NS) is used to emulsify the oil spontaneously. After 12 hours' standing at the temperature of 65°C, the equal volume heavy oil can be completely emulsified in the NS solution with mass concentration of 20000 mg/L to form a oil in water emulsion. Under the action of NS, the oil-water interfacial tension can be reduced to below 10?3mN/m, the oil-water interfacial viscosity and the absolute value of the zeta potential can be increased to a higher value, which can stabilize the emulsion. The formed droplet is small and its distribution is uniform. When the salinity is less than 50000 mg/L, the properties of the emulsion is stable. The results can provide theoretical basis for field application of spontaneous emulsification flooding in heavy oil reservoirs.  相似文献   

12.
冷家堡油田冷37块超稠油热采工艺技术   总被引:1,自引:1,他引:0  
针对辽河油区冷家堡油田深层超稠油特点,提出应用注化学添加剂辅助蒸汽吞吐热力采油方案,优化设计注汽、采油工艺,形成配套稠油开采技术,并在冷37-40-18井进行矿场试验,成功地把超稠油采到地面,日产油20~40t,为开采超稠油提供了技术和经验。  相似文献   

13.
针对典型油样进行组分分析,找出原油中影响黏度的主要因素。采用A型水溶性降黏剂进行乳化降黏实验,通过静态评价试验,研究了水溶性A型降黏剂与原油之间形成乳状液的稳定性和粒径分布、油水界面张力、降黏率及洗油率,考察了该降黏剂降黏效果。实验结果表明:原油中蜡含量迭14.7%,高含蜡是影响原油黏度的主要因素;降黏剂浓度越大,乳状液分水率越低,乳状液粒径分布越集中,油水界面张力越低,乳状液越稳定;油水比越大,分水率随降黏剂浓度变化越显著;随降黏剂浓度增大和油水比降低,降黏率逐渐升高,降黏率最高可达91.5%;该降黏剂有较好的洗油效果,洗油率为61.1%。  相似文献   

14.
深层稠油在油藏条件下具有一定的流动能力 ,但在井筒中的流动阻力却很大 ,造成生产上的困难。该文针对深层稠油油藏的特点 ,在对稠油粘温关系和深井举升工艺进行研究的基础上 ,结合实验室掺稀油降粘效果研究结果 ,对空心杆泵上和泵下掺稀油举升工艺的可行性进行了研究。设计结果及现场生产分析结果表明 ,空心杆掺稀油是一种适合于深层稠油冷采的举升方式。  相似文献   

15.
文中首次提出在底水稠油油藏水平井开发中采用微生物复合降黏技术。该技术是一项针对采取水平井开发但采出程度仍然较低的稠油油藏提出了的综合技术,解决了单一微生物采油效率较低的问题。在BQ油田B64断块馆三3油组底水稠油油藏水平井B28KH井运用该技术后,油井原油黏度有效降低,综合含水下降,单井产量明显上升。该技术先导实验的成功,为提高同类稠油油藏,特别是采用水平井生产、底水活跃、隔夹层不发育的稠油油藏的开发,找到了一种新方法。  相似文献   

16.
做为一套完整的桐油降粘增产工艺技术,除具备性能良好的降粘药品外,其配套的工艺技术是发挥药品性能的重要因素。通过一系列的药品配套工艺的室内试验及现场应用,证明该工艺不仅降粘剂的各项指标具有先进性,而且其配套的工艺能较大幅度地发挥药品的性能。经现场应用,有60%的油井增产明显,部分“死井”得以复产。实现了以最少的投入,产出最多原油的目的。  相似文献   

17.
塔河油田两种主要稠油井筒降粘技术的分析与评价   总被引:2,自引:0,他引:2  
对塔河油田不同稠油降粘举升工艺适应性分析结果表明,掺稀油和化学降粘两种稠油井筒降粘技术适用于塔河油田6区稠油井的开采。简要介绍了两种降粘技术原理,实验室和油井使用结果表明,掺稀油技术适用于稠油粘度大于50000mPa·S、油井含水低于20%的自喷井,在稀油与稠油体积比l:2至1:1时,降粘率达90%以上;化学降粘技术选择的乳化降粘剂XS-2具有抗盐性强、使用温度范围宽的特点,在油水体积比7:3、温度60℃、XS-2用量1.0kg/t原油条件下,T433油井稠油粘度由3156mPa·s降低至345mPa·s。  相似文献   

18.
刘玉国 《石油机械》2020,(2):114-119
孤岛油田稠油井因稠油黏度大而能耗高,采用井筒降黏工艺可以提高采收效率。为了对不同产液量稠油井的井筒降黏工艺选择提供指导,基于传热学和井筒举升理论,采用Hansn模型和Beggs-Brill方法建立了稠油井筒温度场数学模型,对井筒温度场及井筒内原油黏度进行了分析,并在此基础上改进得到双空心杆伴热工艺和泵下掺注活性水工艺的理论模型。分析结果表明:建立的井筒举升数学模型能够较为准确地描述井筒温度场分布;小流量泵下掺注活性水工艺更适合低液量稠油油井的生产,该方法在孤岛油田稠油区块具有较高的推广应用价值。所得结果可为孤岛油田稠油举升工艺选择提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号